Manufacturing Technology 2020, 20(6):699-707 | DOI: 10.21062/mft.2020.116

Analytical and experimental solution of vibrations of a system of bound bodies

Vít Černohlávek1, Martin Svoboda1, Jan Štěrba1, Milan Chalupa1, Milan Sapieta2
1 Faculty of Mechanical Engineering, J. E. Purkyně University in Ústí nad Labem, Pasteurova 7, 400 96 Ústí nad Labem
2 Faculty of Mechanical Engineering, Univerzity of Zilina, Unierzitna 1, 010 26 Zilina. Slovak Republic

The article deals with analytical and experimental solution of vertical oscillations of a mechanical system of bound bodies. The content of the article is to perform an analytical solution of the vertical oscillation of a system of bodies using the computer program MathWorks Matlab and MS Excel. Furthermore, an experimental investigation on a laboratory model of a mechanical system of the same parameters was proved. The aim of the work was to compare the analytical solution with the experimental method and to check the accuracy and applicability of analytical methods for the solved mechanical system.

Keywords: Vibration, Experiment, Passenger car, Analytical solution, Vehicle model
Grants and funding:

Jan Evangelista Purkyně University in Ústí nad Labem UJEP-SGS-2020-48-001-2 and by grant UJEP-IGA-TC-2019-48-04-2.

Received: September 19, 2020; Revised: November 23, 2020; Accepted: December 2, 2020; Prepublished online: December 11, 2020; Published: December 23, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Černohlávek V, Svoboda M, Štěrba J, Chalupa M, Sapieta M. Analytical and experimental solution of vibrations of a system of bound bodies. Manufacturing Technology. 2020;20(6):699-707. doi: 10.21062/mft.2020.116.
Download citation

References

  1. ZEMAN, V., HLAVÁČ, Z. (1999). Vibration of mechanical systems. ZČU in Pilsen. ISBN 80-7082-563-4
  2. SVOBODA, M., SOUKUP, J.: The Influence of Geometry, Manufacturing Asymmetry and Asymmetric Excitation on Vertical Vibration of a Mechanical System. Applied Mechanics and Materials, vol. 302 (2013), p. 429-434. Trans Tech Publications, Switzerland, 2013, ISSN 1660-9336 Go to original source...
  3. SVOBODA, M., SOUKUP, J. (2013). Verification of Numeric Solution by Experiment for Examination Vertical Oscillation of a Mechanical System. In: Manufacturing Technology, Vol. 13 (4), pp. 559-563. Go to original source...
  4. KLIMENDA F., SOUKUP J., SKOČILASOVÁ B., SKOČILAS J. (2020). Vertical vibration of the vehicle when crossing over transverse speed bumps. In: Manufacturing Technology. Vol. 20 (1), pp. 55-59. DOI: 10.21062/mft.2020.020 Go to original source...
  5. SAPIETA, M., ŠULKA, P., SVOBODA, M. (2018). Using a numerical model to verification of thermoelastic analysis of flat specimen, In: Manufacturing Technology, Vol. 18 (3), pp. 482-486, DOI: 10.21062/ujep/125.2018/a/1213-2489/MT/18/3/482 Go to original source...
  6. SLAVÍK J., STEJSKAL V., ZEMAN V. (1997). Fundamentals of machine dynamics, ČVUT, Prague. ISBN 80-01-01622-6, 319 s.
  7. SOUKUP, J., SKOČILAS, J., SKOČILASOVÁ, B. (2008). Experimental determination of natural frequencies and stiffness of resilience of a resiliently mounted body, application to road and rail vehicles, Acta Mechanica Slovana, Slovak republic
  8. CHLEBOVÁ, Z. (2008). Experimental identification of unfavorable modes of operation of the vibrating device, Acta Mechanica Slovana, Slovak Republic
  9. KOŽEŠNÍK, J. (1979). Vibration of mechanical systems, Academia, Prague
  10. BREPTA, R., PŮST, L., TUREK, F. (1994). Mechanical vibration - Technical guide 71, Sobotáles, Pra-gue, ISBN 80-901684-8-5
  11. STEJSKAL, V., BAUMA, V., VAMPOLA, T. (2003). Vibration of mechanical systems, ČVUT, Prague, ISBN 80-01-02752-X

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.