Manufacturing Technology 2023, 23(2):194-203 | DOI: 10.21062/mft.2023.029

Comparison of Mechanical and Tribological Properties of TiN and ZrN Coatings Deposited by Arc-PVD

Michal Krafka ORCID...1, Ladislav Lemberk ORCID...2, Nikolay Petkov ORCID...3, Lucie Svobodová ORCID...1, Totka Bakalova ORCID...1
1 Faculty of Mechanical Engineering, Department of Material Science, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
2 Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
3 Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61, St. Peterburg Blvd. 4000 Plovdiv, Bulgaria

The continuous development of thin coatings for different applications and using various coating meth-ods require the characterization of these newly formed surfaces to evaluate their utility properties. Binary thin coatings of titanium (TiN) and zirconium (ZrN) nitrides were prepared using the Arc-PVD (Ca-thodic Arc Deposition) method. Differences were observed in the structure and morphology of the thin coatings and the change in tribological properties at room and elevated temperatures (150 °C and 300 °C). The research is focused on evaluating the frictional properties of the coating using the Ball-on-Disc method in the dry friction mode. The emphasis is placed on the resistance of the thin coating to wear. The nanohardness was measured to be 26.2 GPa for TiN and 24.8 GPa for ZrN. Index of resistivity against plastic deformation H³/E² (plastic deformation resistance) for ZrN coating – 0.087 and TiN coating – 0.095, H/E (plasticity index) for ZrN – 0.059 and TiN – 0.060. Better friction properties and wear resistance (at 150 °C) were found for the TiN coating compared to the ZrN coating.

Keywords: Thin coatings (TiN, ZrN); Cathodic arc deposition; Tribological properties; Mechanical properties; Wear re-sistance
Grants and funding:

This work was supported by the Student Grant Competition of the Technical University of Liberec under project No. SGS-2022-5060 and by the project “Pretreatment, coating and protection of the substrate”, registration number CZ.01.1.02/0.0/0.0/20_321/0025264 were obtained through the financial support of the Ministry of Industry and Trade in the framework of the targeted support of the “Application VIII”, the Operational Programme Enterprise and Innovations for Competitiveness

Received: December 12, 2022; Revised: December 12, 2022; Accepted: April 20, 2023; Prepublished online: April 25, 2023; Published: May 4, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Krafka M, Lemberk L, Petkov N, Svobodová L, Bakalova T. Comparison of Mechanical and Tribological Properties of TiN and ZrN Coatings Deposited by Arc-PVD. Manufacturing Technology. 2023;23(2):194-203. doi: 10.21062/mft.2023.029.
Download citation

References

  1. J. Fiala a I. Kraus, Povrchy a rozhraní. 2016.
  2. L. Bartovská a M. Šišková, Fyzikální chemie povrchu a koloidních soustav. Praha: Vysoká skola chemicko-technologická, 2005.
  3. V. Sedláček, Povrchy a povlaky kovu. Praha: CVUT, 1992.
  4. K. Dadourek, Vybrané technologie povrchových úprav. Liberec: Technická univerzita v Liberci, 2007.
  5. J. Koskinen, "Cathodic-Arc and Thermal-Evaporation Deposition", in Comprehensive Materials Processing, Else-vier, 2014, s. 3-55. doi: 10.1016/B978-0-08-096532-1.00409-X. Go to original source...
  6. Hasegawa, T. (2008). Tribology research trends. Nova Science Publ..
  7. E. Lugscheider, O. Knotek, C. Barimani, a H. Zimmermann, "Arc PVD-coated cutting tools for modern machining applications", Surf. Coat. Technol., roč. 94, s. 641-646, 1997. Go to original source...
  8. T. Bakalova, P. Louda, L. Voleskỳ, K. Borůvková, a L. Svobodová, "Nanoadditives SiO2 and TiO2 in Pro-cess Fluids", Manuf. Technol., roč. 15, č. 4, s. 502-508, 2015. Go to original source...
  9. A. Hörling, L. Hultman, M. Odén, J. Sjölén, a L. Karlsson, "Mechanical properties and machining performance of Ti1- xAlxN-coated cutting tools", Surf. Coat. Technol., roč. 191, č. 2-3, s. 384-392, 2005. Go to original source...
  10. A. Razmi a R. Yeşildal, "Microstructure and Mechanical Properties of TiN/TiCN/TiC Multilayer Thin Films Deposited by Magnetron Sputtering", 2018. Go to original source...
  11. S. Wilson a A. T. Alpas, "Effect of temperature and sliding velocity on TiN coating wear", Surf. Coat. Technol., roč. 94-95, s. 53-59, říj. 1997, doi: 10.1016/S0257-8972(97)00475-1. Go to original source...
  12. N. Madaoui, N. Saoula, B. Zaid, D. Saidi, a A. S. Ahmed, "Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution", Appl. Surf. Sci., roč. 312, s. 134-138, 2014. Go to original source...
  13. M. Ali, E. Hamzah, a M. R. Toff, "Friction coefficient and surface roughness of TiN-coated HSS deposited using cathodic arc evaporation PVD technique", Ind. Lubr. Tribol., 2008. Go to original source...
  14. A. Leyland a A. Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour", Wear, roč. 246, č. 1-2, s. 1-11, 2000. Go to original source...
  15. T. Bakalova, N. Petkov, H. Bahchedzhiev, P. Kejzlar, a L. Voleskỳ, "Monitoring Changes in the Tribological Behaviour of CrCN Thin Layers with Different CH4/N2 Gas Ratios at Room and Elevated Temperatures", Manuf. Technol., roč. 18, č. 4, s. 533-537, 2018. Go to original source...
  16. T. Bakalova, N. Petkov, T. Blažek, P. Kejzlar, P. Louda, a L. Voleskỳ, "Influence of Coating Process Parameters on the Mechanical and Tribological Properties of Thin Films", in Defect and Diffusion Forum, 2016, roč. 368, s. 59-63. Go to original source...
  17. T. Bakalova, N. Petkov, H. Bahchedzhiev, P. Kejzlar, a P. Louda, "Comparison of mechanical and tribological properties of TiCN and CrCN coatings deposited by CAD", Manuf. Technol., roč. 16, č. 5, s. 859-864, 2016. Go to original source...
  18. T. Bakalova, N. Petkov, H. Bahchedzhiev, P. Kejzlar, P. Louda, a M. Ďurák, "Improving the tribological and mechanical properties of an aluminium alloy by deposition of AlSiN and AlCrSiN coatings", Manuf Technol, roč. 17, s. 824-830, 2017. Go to original source...
  19. T. Bakalova, P. Louda, L. Voleskỳ, a Z. Andršová, "The use of optical microscopy to evaluate the tribological properties", Manuf. Technol., roč. 14, č. 3, s. 256-261, 2014. Go to original source...
  20. M. Pohler, R. Franz, J. Ramm, P. Polcik, a C. Mitterer, "Cathodic arc deposition of (Al,Cr)2O3: Macroparti-cles and cathode surface modifications", Surf. Coat. Technol., roč. 206, č. 6, s. 1454-1460, pro. 2011, doi: 10.1016/j.surfcoat.2011.09.028. Go to original source...
  21. A. S. Kuprin et al., "Structural, mechanical and tribological properties of Cr-V-N coatings deposited by cathodic arc evaporation", Tribol. Int., roč. 165, s. 107246, led. 2022, doi: 10.1016/j.triboint.2021.107246. Go to original source...
  22. D. M. Holzapfel, Z. Czigány, A. O. Eriksson, M. Arndt, a J. M. Schneider, "Thermal stability of macroparticles in Ti0.27Al0.21N0.52 coatings", Appl. Surf. Sci., roč. 553, s. 149527, ervenec 2021, doi: 10.1016/j.apsusc.2021.149527. Go to original source...
  23. Y. Vengesa, A. Fattah-alhosseini, H. Elmkhah, a O. Imantalab, "Influence of post-deposition annealing temperature on morphological, mechanical and electrochemical properties of CrN/CrAlN multilayer coat-ing deposited by cathodic arc evaporation- physical vapor deposition process", Surf. Coat. Technol., roč. 432, s. 128090, nor 2022, doi: 10.1016/j.surfcoat.2022.128090. Go to original source...
  24. A. Delgado, O. Garcia-Zarco, J. Restrepo, a S. E. Rodil, "AlCrVN coatings deposited by cathodic arc: fric-tion and wear properties evaluated using reciprocating sliding test", Surf. Coat. Technol., s. 128140, led. 2022, doi: 10.1016/j.surfcoat.2022.128140. Go to original source...
  25. A. W. Baouchi a A. J. Perry, "A study of the macroparticle distribution in cathodic-arc-evaporated TiN films", Surf. Coat. Technol., roč. 49, č. 1, s. 253-257, pro. 1991, doi: 10.1016/0257-8972(91)90064-4. Go to original source...
  26. A. I. Ryabchikov, P. S. Ananin, A. E. Shevelev, S. V. Dektyarev, D. O. Sivin, a A. I. Ivanova, "Joint influence of steered vacuum arc and negative repetitively pulsed bias on titanium macroparticles suppression", Surf. Coat. Technol., roč. 355, s. 240-246, pro. 2018, doi: 10.1016/j.surfcoat.2018.02.047. Go to original source...
  27. J. Kourtev, R. Pascova, a E. Weißmantel, "Arc evaporated TiN films with reduced macroparticle contamination", Thin Solid Films, roč. 287, č. 1, s. 202-207, jen 1996, doi: 10.1016/S0040-6090(96)08751-2. Go to original source...
  28. D. A. Karpov, "Cathodic arc sources and macroparticle filtering", Surf. Coat. Technol., roč. 96, č. 1, s. 22-33, lis. 1997, doi: 10.1016/S0257-8972(98)80008-X. Go to original source...
  29. J. Salamania et al., "Influence of pulsed-substrate bias duty cycle on the microstructure and defects of ca-thodic arc-deposited Ti1-xAlxN coatings", Surf. Coat. Technol., roč. 419, s. 127295, srp. 2021, doi: 10.1016/j.surfcoat.2021.127295. Go to original source...
  30. Y. Kong, X. Tian, C. Gong, a P. K. Chu, "Reprint of "Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing"", Surf. Coat. Technol., roč. 355, s. 318-327, pro. 2018, doi: 10.1016/j.surfcoat.2019.06.042. Go to original source...
  31. X. Fu, L. Cao, C. Qi, Y. Wan, a C. Xu, "Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant", Ceram. Int., roč. 46, č. 15, s. 24302-24311, jen 2020, doi: 10.1016/j.ceramint.2020.06.211. Go to original source...
  32. B. Warcholinski, A. Gilewicz, A. S. Kuprin, a I. V. Kolodiy, "Structure and properties of CrN coatings formed using cathodic arc evaporation in stationary system", Trans. Nonferrous Met. Soc. China, roč. 29, č. 4, s. 799-810, dub. 2019, doi: 10.1016/S1003-6326(19)64990-3. Go to original source...
  33. W. Cui, F. Niu, Y. Tan, a G. Qin, "Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy", Trans. Nonferrous Met. Soc. China, roč. 29, č. 5, s. 1026-1035, kvě. 2019, doi: 10.1016/S1003-6326(19)65011-9. Go to original source...
  34. T. Plichta, R. Zahradnicek, a V. Cech, "Surface topography affects the nanoindentation data", Thin Solid Films, roč. 745, s. 139105, bře. 2022, doi: 10.1016/j.tsf.2022.139105. Go to original source...
  35. Y. Tanno a A. Azushima, "Effect of counter materials on coefficients of friction of TiN coatings with preferred grain orientations", Wear, roč. 266, č. 11-12, s. 1178-1184, 2009. Go to original source...
  36. A. Vereschaka et al., "Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools", Surf. Coat. Technol., roč. 385, s. 125402, bře. 2020, doi: 10.1016/j.surfcoat.2020.125402. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.