Manufacturing Technology 2023, 23(3):326-332 | DOI: 10.21062/mft.2023.041

Effect of High Temperature Heat Treatment on the Structure and Properties of FeCoCrNiZr Alloy

Jiasheng Shen ORCID...1, Sheng Lei ORCID...1,2, Jigen Fang ORCID...1, Yafeng Liu ORCID...1, Zhengqiang Hu ORCID...1, Shaojie Cui ORCID...1, Hailang Zhang ORCID...1, Zhengwei Xue ORCID...1
1 School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
2 Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China

FeCoCrNiZr high-entropy alloy was melted by vacuum arc melting. The alloys were vacuum annealed at 873, 1073, and 1273K, respectively. The microstructure, compressive mechanical properties, thermal stability, and hardness of as-cast and annealed FeCoCrNiZr alloys at different annealing temperatures were investigated by using X-ray diffractometry (XRD), scanning electron microscopy (SEM), microhardness tester and universal material testing machine. The results reveal that it has no noticeable change in the phase composition of the alloy after high temperature annealing. The as-cast FeCoCrNiZr alloy is composed of the body-centred cubic phase and Laves phase. In the 1073K annealed state, the σ phase was detected in the alloy, and the alloy's hardness reached a maximum value of 915.94 HV0.2. The hardness of the alloy in the annealed state is obviously higher than that of the as-cast alloy, and the increased compressive strength is the result of the combined effect of the hardening of the C15 Laves phase and the solid solution strengthening of the Zr atoms.

Keywords: High-entropy alloy, Annealing, Microstructure, Compressive properties, Microhardness
Grants and funding:

This work has been supported by the Natural Science Foundation of the Higher Education Institutions of Anhui Province under Grant No. KJ2020ZD42

Received: January 11, 2023; Revised: June 13, 2023; Accepted: June 14, 2023; Prepublished online: June 15, 2023; Published: July 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Shen J, Lei S, Fang J, Liu Y, Hu Z, Cui S, et al.. Effect of High Temperature Heat Treatment on the Structure and Properties of FeCoCrNiZr Alloy. Manufacturing Technology. 2023;23(3):326-332. doi: 10.21062/mft.2023.041.
Download citation

References

  1. ANCHEN, F.; JIANHONG, L.; MINGHUNG, T., On the phase constituents of four CoCrFeNiX (X=Y, Ti, Zr, Hf) high-entropy alloys after prolonged annealing. Journal of Materials Research and Technology 2020, 9 (5), 11231-11243 Go to original source...
  2. XUEHUI, Y.; YONG, Z., Functional properties and promising applications of high entropy alloys. Scripta Materialia 2020, 187, 188-193 Go to original source...
  3. YE, Y.F.; WANG, Q.; LU, J.; LIU, C.T.; Yang, Y., High-entropy alloy: challenges and prospects. Materials Today 2016, 19 (6), 349-362 Go to original source...
  4. XIAOHUA, C.; WEIYANG, X.; JIN, Z.; ZIDONG, W.; YANLIN, W.; YIFEI, M.; MING, Y.; WENWEN, J.; HUIWEN, Y.; YIDONG, W.; XIDONG, H., Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 2021, 128, 107024 Go to original source...
  5. HONGBO, X.; GUIZHONG, L.; JINGJIE, G., Effect of Mn, V, Mo, Ti, Zr elements on the organisation and high temperature oxidation properties of AlFeCrCoCu-X high entropy alloy. The Chinese Journal of Nonferrous Metals 2015, 25(01), 103-110
  6. HANA, T.; FILIP, P., Partial Substitution of Mn by Al in the Cocrfenimnxal20-X (X=5, 10, 15) High Entropy Alloy Prepared of Mechanical Alloying and Spark Plasma Sintering. Manufacturing Technology 2022, 22(3), 342-346, DOI: 10.21062/mft.2022.045 Go to original source...
  7. DAVID, B.; ANTONÍN, K.; JAN, N.; ZBYNĚK, S., The Effect of Boriding and Heat Treatment on the Structure and Properties of 100Cr6 Steel. Manufacturing Technology 2022, 22(1), 2-9, DOI: 10.21062/mft.2022.003 Go to original source...
  8. YUE, J.; GUANGTAI, Z.; SIMENG, C.; X.M. Li., Organization and properties of CrFeCoNiTi_x high-entropy alloys, J. Journal of Harbin University of Science and Technology 2020, 25 (06), 112-118
  9. JUNLUN Z.; XIANLUN, Y.; DONG, Y.; YIPING, L.; JIANG, L.; WANG, T.M.; LI, T.J., Corrosion properties of AlxCoCrFeNiTi0.5 high entropy alloys in 0.5M H2SO4 aqueous solution. Materials Research Innovations 2014, 18 (sup4), 756 Go to original source...
  10. WENNA, J.; HUI, J.; DONGXU, Q.; JUNYANG, H.; HONGLIANG, Z.; YIPING, L.; TINGJU, L., Effects of Mo on microstructure and mechanical properties of Fe2Ni2CrMox eutectic high entropy alloys. Materials Chemistry and Physics 2021, 260, 24175 Go to original source...
  11. WENYI, H.; HUI, Z.; FANG, F.; ZONGHAN, X.; JIANQING, J., Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials & Design 2017, 134, 226-233 Go to original source...
  12. LUDMILA, K.; LVETA, T.; ADAM, S., Effect of various heat and thermo-mechanical treatments on low alloyed CMnAlNb high strength steel. Manufacturing Technology 2021, 21(6), 824-828, DOI: 10.21062/mft.2021.094 Go to original source...
  13. MICHAL, P.; HANA, J.; KATEŘINA, R.; TOMÁŠ, J.; RADOVAN, B., Microstructural Evolution in 42SiCr Steel in a High-Temperature Chamber Under Microscope Objective. Manufacturing Technology 2020, 20(3), 355-360, DOI: 10.21062/mft.2020.053 Go to original source...
  14. W.H, L.; Z.P, L.; J.Y, H.; J.H, L.; Z.J, W.; B, L.; Y, L.; M.W, C., Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Materialia 2017, 134, 226-233
  15. YUFANG, Z.; JINYU, Z.; YAQIANG, W.; SHENGHUA, W.; XIAOQING, L.; KAI, Wu.; GANG, L.; JUN, S., The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr. Journal of Materials Science & Technology 2021, 68 (09), 16-29 Go to original source...
  16. VRTNIK, S.; GUO, S.; SHEIKH, S.; JELEN, A.; KOŽELJ, P.; LUZAR, J.; KOCJAN, A.; JAGLIČIĆ, Z.; MEDEN, A.; GUIM, H.; KIM, H.J.; DOLINŠEK, J., Magnetism of CoCrFeNiZr_x eutectic high-entropy alloys. Intermetallics 2018, 93, 122-133 Go to original source...
  17. XI, B.; WEI, F.; JIWEI, L.; RUOBIN, C.; HANYANG, YU.; JIAOHUI, YAN.; XIN, Z.; FUXING, Y., Effect of Cr content on precipitation behavior of (CoCrNi)94Ti3Al3 medium entropy alloys. Intermetallics 2021, 132, 107125 Go to original source...
  18. ZHENG, Z.; ZHONGKA, Y.; HAO, C.; WEIHUO, L., Effect of Al Content on Microstructure and Nanoindentation Creep Behaviors of AlxFeCoNiCu High-entropy Alloys. Hot Working Technology 2019, 48, 62-65
  19. LIMING, S.; YI, X., Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by mechanical alloying. Journal of Non-Crystalline Solids 2020, 530, 119854 Go to original source...
  20. MICHAEL, M.; GERALD, R.; JIRI, S., The Effect of Cryogenic Mechanical Alloying and Milling Duration on Powder Particles' Microstructure of an Oxide Dispersion Strengthened FeCrMnNiCo High-Entropy Alloy. Metallurgical and Materials Transactions A 2021, 53, 1-12 Go to original source...
  21. SHENG, L.; ZHENGWEI, X.; YAFENG, L.; YUN, L.; DONGSHENG, J.; PING, W., Effect of annealing temperature on the structure and properties of FeCoCrNiMo high-entropy alloy. High Temperature Materials and Processes 2022, 41, 417-423 Go to original source...
  22. LIMING, S.; YI, X., Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by me-chanical alloying. Journal of Non-Crystalline Solids 2020, 530, 119854 Go to original source...
  23. QINGXUAN, S.; ZHEN, W.; JIANG, W.; SHURONG, X.; BO, L.; QUAN, Y.; FENGJUN, Z.; LE, G.; JUN, L., Additive manufacturing of CoCrFeNiMo eutectic high entropy alloy: microstructure and mechanical properties. Journal of Alloys and Compounds 2022, 913, 165239 Go to original source...
  24. B.X, C.; T, Y.; L, F.; J.H, L.; Z.B, J.; C.T, L., Refractory alloying additions on the thermal stability and mechanical properties of high-entropy alloys. Materials Science and Engineering A 2020, 797, 140020 Go to original source...
  25. GANG, Q.; RUIRUN, C.; HUITING, Z.; HONGZE, F.; LIANG, W.; YANGQING, S.; JINGJIE, G.; HENGZHI, F., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. Journal of Materials Science & Technology 2019, 35 (4), 578-583 Go to original source...
  26. MOON, J.; TABACHNIKOVA, E.; SHUMILIN, S.; HRYHOROVA, T.; ESTRIN, Y.; BRECHTL, J.; PETER K, L.; WENQING, W.; KARIN A, D.; ZARGARAN, A.; JAEWUNG, B.; HYEON-SEOK, D.; BYEONG-JOO, L.; KYOUNGSEOP, K., Deformation behavior of a Co-Cr-Fe-Ni-Mo medium entropy alloy at extremely low temperatures. Materials Today 2021, 50, 55-68 Go to original source...
  27. ECKER, J.; HE, G.; ZHEFENG, Z.; LÖSER, W., Fracture-induced melting in glassy and nanostructured composite materials. Metastable Nanocrystal. Mater 2004, 20-21, 357-365 Go to original source...
  28. BELKHOUANE, S.; BENTOUAF, A.; RACHED, H.; BOUYAKOUB ZAHIRA, A., Electronic structure, magnetic and structural properties of binary cubic C15 Laves phases PrX2 (X=Co and Fe): a first-principles study. Applied Physics A, 2021, 127 (11), 835 Go to original source...
  29. MENGDI, Z.; LIJUN, Z.; JIANTAO, F.; PENGFEI, Y.; GONG, L., Novel Co-free CrFeNiNb0.1Tix high-entropy alloys with ultra high hardness and strength. Materials Science & Engineering A 2019, 764 (C), 138212 Go to original source...
  30. JIALE, M.; BAOLIN, W.; GUOSHENG, D.; LU Z.; GANG, W.; LI, Z.; NAIFU, Z.; YANDONG, L., The synergistic addition of Al, Ti, Mo and W to strengthen the equimolar CoCrFeNi high-entropy alloy via thermal-mechanical processing. Journal of Alloys and Compounds 2022, 911, 902 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.