Manufacturing Technology 2023, 23(6):935-948 | DOI: 10.21062/mft.2023.083
Experimental Investigation of Armour (Armox-Aramid-UHMWPE)
- 1 Faculty of Military Technology, University of Defence in Brno. Kounicova 65, 612 00 Brno. Czech Republic
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- 3 Faculty of Mechanical Engineering, Research Center of Manufacturing Technology, Czech Technical University in Prague, Horská 3, 128 00 Prague 2, Czech Republic
In this study, the ballistic resistance of multi-layered composite armour is experimentally investigated. The composition of this armour consisted of armour steel Armox 500T, para-aramid fabric Twaron CT 747 and ultra-high molecular weight polyethylene Endumax Shield XF33. To compare the ballistic resistance, the ballistic resistance of the armour with the perforated steel Armox 500T was tested. The rifle cartridges 7.62 x 51 mm FMJ NATO M80 were used to test this resistance. The aim of this experiment was to compare the ballistic resistance of unperforated and perforated steel Armox 500T. As part of the experimental part, the chemical composition and microhardness of the steel Armox 500T was verified. The hardness of the composite materials was also measured for optimal armor configuration. After the projectile impact, the damage mechanism of the steel Armox 500T and the composite materials were investigated by using optical and electron microscopy. It was proved that the ballistic resistance of the perforated steel depends on the used pattern. Based on the performed experiments, the steel Armox with pattern A effectively reduced the weight of the testing configuration and absorbed all the kinetic energy of the projectile 7.62 mm FMJ M80.
Keywords: Ballistic resistance, Armour protection, Perforated sheet, Composite, Aramid
Grants and funding:
The work presented in this paper was supported by the specific research project 2023 “SV23-216” at the Department of Mechanical Engineering, University of Defence in Brno and was supported by the Project for the Development of the Organization “VAROPS (DZRO VAROPS) Military autonomous and robotic assets” by the Ministry of Defence of Czech Republic
Received: August 17, 2023; Revised: August 17, 2023; Accepted: November 13, 2023; Prepublished online: November 27, 2023; Published: December 22, 2023 Show citation
References
- ROLC, S., BUCHAR, J., KŘESŤAN, J., KRÁTKÝ J., ŘÍDKÝ R. (2022). Pancéřová ochrana. Praha: Academia. Gerstner. ISBN 978-80-200-3100-6.
- Novak, L., Cornak, S. (2015). A contribution to shooting resistance evaluation of military vehicles. In International Conference on Military Technologies (ICMT) 2015, pp. 1-4. IEEE. https://doi.org/10.1109/MILTECHS.2015.7153711
Go to original source...
- Cheeseman, B. A., Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite Structures, 61(1-2), 161-173. https://doi.org/10.1016/S0263-8223(03)00029-1
Go to original source...
- Pokorný, Z., Kadlec, J., Hrubý, V., Joska, Z., Tran, D. Q., Beran, D. (2022). Plasma Nitriding of Bored Barrels. Advances in Military Technology, Vol. 6, No. 1, pp. 69-76. Retrieved from https://aimt.cz/index.php/aimt/article/view/1616
- BHATNAGAR, A. (2016). Lightweight Ballistic Composites, Military and Law-Enforcement Applications, 2nd ed.; Woodhead Publishing: Cambridge, UK. ISBN 978-0-08-100406-7.
Go to original source...
- Pokorny, Z., Studeny, Z., Pospichal, M., Joska, Z., Hruby, V. (2015). Characteristics of Plasma Nitrided Layers. Manufacturing Technology, Vol. 15, No. 3, pp. 403-409. https://doi.org/10.21062/ujep/x.2015/a/1213-2489/MT/15/3/403
Go to original source...
- Crouch, I. G. (2019). Body armor - New materials, new systems. Defence Technology, Vol. 15, No. 3, pp. 241-253. https://doi.org/10.1016/j.dt.2019.02.002
Go to original source...
- Demir, T., Übeyli, M., Yildirim, R. O. (2008). Investigation on the ballistic impact behavior of various alloys against 7.62mm armor piercing projectile. Materials and Design, Vol. 29, No. 10, pp. 2009-2016. https://doi.org/10.1016/j.matdes.2008.04.010
Go to original source...
- Göde, E., Teoman, A., Çetin, B., Tonbul, K., Davut, K., Kuşhan, M. C. (2023). An experimental study on the ballistic performance of ultra-high hardness armor steel (Armox 600T) against 7.62 mm × 51 M61 AP projectile in the multi-hit condition. Engineering Science and Technology, an International Journal, Vol. 38. https://doi.org/10.1016/j.jestch.2023.101337
Go to original source...
- Ranaweera, P., Bambach, M. R., Weerasinghe, D., Mohotti, D. (2023). Ballistic impact response of monolithic steel and tri-metallic steel-titanium-aluminium armor to nonrigid NATO FMJ M80 projectiles. Thin-Walled Structures, Vol. 182. https://doi.org/10.1016/j.tws.2022.110200
Go to original source...
- Abtew, M. A., Boussu, F., Bruniaux, P. (2021). Dynamic impact protective body armor: A comprehensive appraisal on panel engineering design and its prospective materials. Defence Technology, Vol. 17, No. 6, pp. 2027-2049. https://doi.org/10.1016/j.dt.2021.03.016
Go to original source...
- Doddamani, S., Kulkarni, S. M., Joladarashi, S., T S, M. K., Gurjar, A. K. (2023). Analysis of light weight natural fiber composites against ballistic impact: A review. International Journal of Lightweight Materials and Manufacture, Vol. 6, No. 3, pp. 450-468. https://doi.org/10.1016/j.ijlmm.2023.01.003
Go to original source...
- VILIŠ, J., POKORNÝ, Z., ZOUHAR, J. (2022). TESTING THE BALLISTIC RESISTANCE OF COMPOSITE MATERIALS. In: 31st International Conference on Metallurgy and Materials, METAL 2022. Ostrava: TANGER Ltd., pp. 656-661. ISSN 2694-9296. ISBN 978-1-7138-6230-7. doi:10.37904/metal.2022.4436
Go to original source...
- Pospíchal, M., Dvořáková, R., Studený, Z., Pokorný, Z. (2015). Influence of Initial Carbon Concentration on Nitride Layers. Manufacturing Technology, Vol. 15, No. 5, pp. 889-893. https://doi.org/10.21062/ujep/x.2015/a/1213-2489/MT/15/5/889
Go to original source...
- Prochazka, J., Pokorny, Z., Jasenak, J., Majerik, J., Neumann, V. (2021). Possibilities of the Utilization of Ferritic Nitrocarburizing on Case-Hardening Steels. Materials, Vol. 14, No. 13. https://doi.org/10.3390/ma14133714
Go to original source...
- Viliš, J., Pokorný, Z., Zouhar, J., Vítek, R., Procházka, J. (2022). Evaluation of ballistic resistance of thermoplastic and thermoset composite panels. Journal of Physics: Conference Series, Vol. 2382, No. 1. https://doi.org/10.1088/1742-6596/2382/1/012024
Go to original source...
- Studeny, Z., Dobrocky, D., Viliš, J., Adam, J. (2022). Overview of tribological properties of UHMW polyethylene under rotation. Journal of Physics: Conference Series, Vol. 2382, No. 1. https://doi.org/10.1088/1742-6596/2382/1/012013
Go to original source...
- Viliš, J., Pokorný, Z., Zouhar, J., Jopek, M. (2022). Ballistic Resistance of Composite Materials Tested by Taylor Anvil Test. Manufacturing Technology, Vol. 22, No. 5, pp. 610-616. https://doi.org/10.21062/mft.2022.074
Go to original source...
- Twaron CT 747. Teijin Limited. Ballistic Materials Handbook [online]. Japan: Tokyo, Osaka. Teijin-Aramid-Ballistic-handbook.pdf (teijinaramid.com)
- Endumax Shield XF33. Teijin Limited. Ballistic Materials Handbook [online]. Japan: Tokyo, Osaka. https://www.teijinaramid.com/wp-content/uploads/2018/12/18033TEI-Prod-broch-Endumax_LR.pdf
- Armox® 500T, SSAB. Datasheet Armox® 500T. Available online: https://www.ssab.com/en/brands-and-products/armox/product-offer/armox-500t
- Hashim, N., Majid, D. L., Uda, N., Zahari, R., Yidris, N. (2017). Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite. IOP Conference Series: Materials Science and Engineering, Vol. 270. https://doi.org/10.1088/1757-899X/270/1/012021
Go to original source...
- Ma, Y., Wang, J., Zhao, Y., Wei, X., Ju, L., Chen, Y. (2020). A New Vacuum Pressure Infiltration CFRP Method and Preparation Experimental Study of Composite. Polymers, Vol. 12, No. 2. https://doi.org/10.3390/polym12020419
Go to original source...
- ISO 6507-1. Metallic materials - Vickers hardness test - Part 1: Test method.
- ISO 48-4. Rubber, vulcanized or thermoplastic elastomer - Determination of hardness - Part 4: Hardness by the indentation method (Shore hardness).
- NIJ STANDARD-0101.06. Ballistic Resistance of Body Armor. National Institute of Justice: Washington, DC, USA.
- ČSN 39 5360. Zkoušky odolnosti ochranných prostředků - Zkoušky odolnosti proti střelám, střepinám a bodným zbraním- Technické požadavky a zkoušky. Praha: Česká agentura pro standardizaci, 2018.
- VPAM APR 2006. General basis for ballistic material, construction and product testing: Requirements, test levels and test procedures. Rijswijk: Association of test laboratories for bullet resistant materials and constructions. https://www.vpam.eu/pruefrichtlinien/aktuell/apr-2006/
- ČOS 130027. Balistická odolnost osobních ochranných prostředků při ohrožení střepinami - modifikovaná metoda. Praha: Úřad pro obrannou standardizaci, katalogizaci a státní ověřování jakosti, 2022. https://oos-data.army.cz/cos/cos/130027.pdf
- STANAG 2920 Edition 1. NATO - Military Agency for Standardization (MAS) Ballistic Test Method for Personal Armor Materials and Combat Clothing. NATO Standardization Agency. Brussels, Belgium.
- NATO, AEP-55, STANAG 4569. Protection levels for occupants of logistic and light armored vehicles. Part 1-4: General - Annex A", First edition, Volume 1. Brussels, Belgium.
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.