Manufacturing Technology 2024, 24(1):9-14 | DOI: 10.21062/mft.2024.020
Effect of Laser Shock Peening on the Microstructure of P265GH Steel and X6CrNiTi18-10 Stainless Steel Dissimilar Welds
- 1 Centrum výzkumu Rez s.r.o., Morseova 1245/6, Pilsen, 30100, Czech Republic
- 1 HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, 252 41 Dolni Brezany, Czech Republic
The aim of this study was to verify the laser shock peening (LSP) on the microstructure of P265GH steel and X6CrNiTi18-10 stainless steel. The LSP surface treatment was done underwater on the dis-similar weld joint of the P265GH and X6CrNiTi18-10 tubes. The metallographic analysis then focuses on the evaluation of microstructure in heat-affected zones of both materials. The results of our analysis are possibly summarised as follows. Light and scanning electron microscopy have shown grain refinement in the treated surface of the HAZ region of X6CrNiTi18-10 steel. For P265GH steel, it was possible to find a remelted surface layer with a thickness of 3.3±0.6 micrometers in the peened areas. For P265GH steel was also possible to observe a significant increase in dislocation density in the grains with straight contact with the peened surface. In the case of X6CrNiTi18-10 steel, this area extended to a depth of over 50 micrometers from the peened surface.
Keywords: LSP, Laser shock peeening, P265GH, X6CrNiTi18-8, Dissimilar welds
Grants and funding:
The presented work has been realized within Institutional Support by the Ministry of Industry and Trade of the Czech Republic
Received: August 31, 2023; Revised: September 27, 2023; Accepted: February 19, 2024; Prepublished online: February 22, 2024; Published: February 23, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- DUCHÁČEK, P., PALÁN, M., ČANČURA, Z. (2017). Heterogenní svarové spoje parních generátorů JE typu VVER 1000 MW zhotovené přídavným svařovacím materiálem typu SV-10CH16N25AM6. In: Zvyąování ľivotnosti komponent energetických zařízení v elektrárnách, pp. 63-66. Západočeská univerzita v Plzni, Plzeň. ISBN 978-80-261-0741-5
- SAMEK, P. (2018). Korozní odolnost heterogenních svarů na jaderných elektrárnách. (Master thesis). Západočeská univerzita v Plzni, Plzeň
- ČECH, J., HAU©ILD, P., SIEGL, J., JUNEK, L., ERNESTOVÁ, M., BYSTRIANSKÝ, J. (2019). Charak-tericaze heterogenních svarových spojů In: Zvyąování ľivotnosti komponent energetických zařízení v elektrárnách, pp. 89-92. Západočeská univerzita v Plzni, Plzeň. ISBN 978-80-261-0885-6
- DAK, G., PANDEY, C. (2020). A critical review on dissimilar welds joint between Martensitic and Austenitic Steel for Power Plant Application. In: Journal of Manufacturing Processes, 58, pp. 377-406. doi: 10.1016/j.jmapro.2020.08.019
Go to original source...
- CHANDRASEKAR, G., KAILASANATHAN, C., VASUNDARA, M. (2018). Investigation on un-peened and laser shock peened dissimilar weldments of Inconel 600 and Aisi 316L fabricated using activated-TIG welding technique. In: Journal of Manufacturing Processes, 35, pp. 466-478. doi: 10.1016/j.jmapro.2018.09.004.
Go to original source...
- LAGO J, GUAGLIANO M, NOVÝ F, BOKŮVKA O. Influence of Laser Shock Peening Surface Treatment on Fatigue Endurance of Welded Joints from S355 Structural Steel. Manufacturing Technology. 2016;16(1):154-159. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/1/154.
Go to original source...
- PROCHAZKA J, VILIS J, DOBROCKY D, SPERKA P. Modification of Diffusion Layers by Laser Shock Peening. Manufacturing Technology. 2022;22(6):724-732. doi: 10.21062/mft.2022.085.
Go to original source...
- Brajer J, Mádl J, ©vábek R, Pitrmuc Z, Rostohar D, Zeman P, Ocaña JL. Application of Laser Shock Processing. Manufacturing Technology. 2015;15(3):278-285. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/3/278.
Go to original source...
- KAUFMAN, J., ©PIRIT, Z., VASUDEVAN, V., STEINER, M., MANNAVA, S., BRAJER, J., PÍNA, L., MOCEK, T. (2021). Effect of Laser Shock Peening Parameters on Residual Stresses and Corrosion Fatigue of AA5083. In: Metals, 11(10), p.1635. doi: 10.3390/met11101635
Go to original source...
- BRICÍN, D., GILÍK, H. (2022). Surface structure analysis of X12CRNIMOV12-3 and X6CRNITI18-10 steel samples processed by Laser Shot peening (LSP). MATEC Web of Conferences, 367, p. 00004. doi:10.1051/matecconf/202236700004.
Go to original source...
- Li, X. et al. (2023). Wear resistance of Aisi 5140 steel with micro-laser shock peening, Materials Letters, 346, p. 134328. doi:10.1016/j.matlet.2023.134328.
Go to original source...
- ©PIRIT, Z., KAUFMAN, J., BRAJER, J., STREJCIUS, J., CHOCHOLOU©EK, M. (2019). Increase of ma-terial cycle fatigue life time using the laser shock peening method In: Zvyąování ľivotnosti komponent energetic-kých zařízení v elektrárnách, pp. 171-175. Západočeská univerzita v Plzni, Plzeň. ISBN 978-80-261-0885-6
- TAKATA, T. ET AL. (2016). Effect of confinement layer on laser ablation and cavitation bubble during Laser Shock Peening, MATERIALS TRANSACTIONS, 57(10), pp. 1776-1783. doi:10.2320/matertrans.m2016150.
Go to original source...
- CHU, J.P. ET AL. (1999). Laser-shock processing effects on surface microstructure and mechanical properties of Low Carbon Steel, Materials Science and Engineering: A, 260(1-2), pp. 260-268. doi:10.1016/s0921-5093(98)00889-2.
Go to original source...
- WU, H. ET AL. (2023). Optimization of microstructure and properties in U75V steel rail cladding layers manufactured by laser melting deposition and laser shock peening, Optics & Laser Technology, 163, p. 109436. doi:10.1016/j.optlastec.2023.109436.
Go to original source...
- XIONG, Y. ET AL. (2015). Microstructure and microhardness of pearlitic steel after laser shock processing and annealing, Materials Science and Technology, 31(15), pp. 1825-1831. doi:10.1179/1743284715y.0000000020.
Go to original source...
- HU, Y. AND YAO, Z. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with nd:YAG pulsed laser, Surface and Coatings Technology, 202(8), pp. 1517-1525. doi:10.1016/j.surfcoat.2007.07.008.
Go to original source...
- JOHN, M. ET AL. (2023). Tribological, corrosion, and microstructural features of laser-shock-peened steels, Metals, 13(2), p. 397. doi:10.3390/met13020397.
Go to original source...
- LIU, D. et al. (2019). Effect of laser shock peening on corrosion resistance of 316L stainless steel laser welded joint, Surface and Coatings Technology, 378, p. 124824. doi:10.1016/j.surfcoat.2019.07.048.
Go to original source...
- ZHOU, L. ET AL. (2016). Laser shock peening induced surface nanocrystallization and martensite trans-formation in austenitic stainless steel, Journal of Alloys and Compounds, 655, pp. 66-70. doi:10.1016/j.jallcom.2015.06.268.
Go to original source...
- BRANDAL, G. AND LAWRENCE YAO, Y. (2016). Material influence on mitigation of stress corrosion cracking via laser shock peening, Journal of Manufacturing Science and Engineering, 139(1). doi:10.1115/1.4034283.
Go to original source...
- WANG, Z.D. ET AL. (2020). Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened Aisi 316L Stainless Steel, Surface and Coatings Technology, 385, p. 125403. doi:10.1016/j.surfcoat.2020.125403.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.