Manufacturing Technology 2024, 24(1):2-8 | DOI: 10.21062/mft.2024.021

Influence of the Orientation of Parts Produced by Additive Manufacturing on Mechanical Properties

Vladimír Bechný ORCID..., Miroslav Matuš ORCID..., Richard Joch ORCID..., Mário Drbúl ORCID..., Andrej Czán ORCID..., Michal Šajgalík ORCID..., František Nový ORCID...
Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Binderjetting technology works on the principle of line injection moulding, using metal powder and liquid binder as input material, which is uniformly applied by print heads to the previous layer using a nozzle. By successively applying each layer, the desired shape of the designed component is obtained. The technology offers a large number of advantages which include the possibility of using any printing powder that may contain functional graded materials. Furthermore, it is a green manufacturing technology where we can reuse unused metal powder in the next printing cycle after following the prescribed process. As a result, we characterize this technology as a near-waste-free production of metal parts. The research aims to analyse the impact of different orientations of printed parts within the workspace on the mechanical properties of the resultant components. Additionally, the study aims to compare these mechanical properties with the specifications recommended by the metal powder manufacturer and findings from previous research studies. Based on the experimental measurements carried out, we can conclude that the influence of the orientation of the parts in the workspace has only a minimal effect on the mechanical properties of the manufactured parts.

Keywords: Additive Manufacturing, BinderJetting, Sintering, Mechanical properties, Tensile test
Grants and funding:

This research was funded by the University of Žilina project 1/0520/21 Research of the integrity of surfaces created by the additive process of atomic diffusion of metal-elastomer fibers with post-process of productive machining, next project APVV 20-0561: “Research on the implementation of new measurement methods for the calibration of measurement systems for industrial metrology practice”, Kega project 033ŽU-4/2022: “Implementation of the language of geometric product specification in the field of coordinate 3D metrology”, Kega project 063/ŽU-4/2021: “Integration of detection-visualization technologies for innovative additive manufacturing technologies as an online tool for creative and critical thinking”

Received: October 18, 2023; Revised: February 15, 2024; Accepted: February 19, 2024; Prepublished online: February 22, 2024; Published: February 23, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bechný V, Matuš M, Joch R, Drbúl M, Czán A, Šajgalík M, Nový F. Influence of the Orientation of Parts Produced by Additive Manufacturing on Mechanical Properties. Manufacturing Technology. 2024;24(1):2-8. doi: 10.21062/mft.2024.021.
Download citation

References

  1. MATUŠ, M., BECHNÝ, V., JOCH, R., DRBÚL, M., HOLUBJÁK, J., CZÁN, A., NOVÁK, M., ŠAJGALÍK, M. (2023). Geometric Accuracy of Components Manufactured by SLS Technology Regard-ing the Orientation of the Model during 3D Printing. In: Manufacturing Technology, Vol. 23, No. 2, pp. 233- 240. DOI: 10.21062/mft.2023.027 Go to original source...
  2. TIMKO, P., CZÁNOVÁ, T., CZÁN, A., SLABEJOVÁ, S., HOLUBJÁK, J., CEDZO, M. (2022). Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies. In: Manufacturing Technology, Vol. 22, No. 4, pp. 347-355. DOI: 10.21062/mft.2023.008 Go to original source...
  3. TIMKO, P., HOLUBJAK, J., BECHNÝ, V., NOVÁK, M., CZÁN, A., CZÁNOVÁ, T. (2023). Surface Analysis and Digitization of Components Manufactured by SLM and ADAM Additive Technologies. In: Manufacturing Technology, Vol. 23, No. 1, pp. 127-134. DOI: 10.21062/mft.2023.008 Go to original source...
  4. KOZOVÝ, P., ŠAJGALÍK, M., DRBÚL, M., HOLUBJÁK, J., MARKOVIČ, J., JOCH, R. (2023). Identification of Residual Stresses after Machining a Gearwheel Made by Sintering Metal Powder. In: Manufacturing Technology, Vol. 23, No. 4. DOI: 10.21062/mft.2023.054 Go to original source...
  5. JOCH, R., ŠAJGALÍK, M., DRBÚL, M., HOLUBJÁK, J., CZÁN, A., BECHNÝ, V., MATÚŠ, M. (2023). The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process. In: Materials, Vol. 16, No. 10. https://doi.org/10.3390/ma16103624 Go to original source...
  6. NGO, T. D., KASHANI, A., IMBALZANO, G., NQUYEN, K. T., HUI, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. In: Composites Part B: Engineering, Vol.143, pp. 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012 Go to original source...
  7. CZÁN, A., CZÁNOVÁ, T., HOLUBJÁK, J., NOVÁK, M., CZÁNOVÁ, N., CZÁN, A., KRIŠÁK, D. (2023). Comparative Evaluation of Working Accuracy in the Atomic Diffusion Additive Manufacturing (ADAM) Process and the Binder Jetting (BJ) Process by Analysing Key Characteristics. In: Manufacturing Technology, Vol. 23, No. 6, pp. 769-780. DOI: 10.21062/mtf.2023.108 Go to original source...
  8. BECHNÝ, V., CZÁN, A., HOLUBJÁK, J., CZÁNOVÁ, T., CEDZO, M., TIMKO, P. (2023). Analysis and comparison of production parameters of additive technologies in the construction of objects based on metals using the ADAM and SLM methods. In: AIP Conference Proceedings, Vol. 2976, No. 1. https://doi.org/10.1063/5.0172771 Go to original source...
  9. TANCOGNE-DEJEAN, T., ROTH, C. C., MOHR, D. (2021). Rate-dependent strength and ductility of binder jetting 3D-printed stainless steel 316L: Experiments and modeling. In: International Journal of Mechanical Sciences, Vol. 207. https://doi.org/10.1016/j.ijmecsci.2021.106647 Go to original source...
  10. MIRZABABAEI, S., PASEBANI, S. (2019). A review on binder jet additive manufacturing of 316L stain-less steel. In: Journal of Manufacturing and Materials Processing, Vol. 3, No. 3. https://doi.org/10.3390/jmmp3030082 Go to original source...
  11. MOSTAFAEI, A., STEVENS, E. L., HUGHES, E. T., BIERY, S. D., HILLA, C., CHMIELUS, M. (2016). Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties. In: Materials and Design, Vol. 108, pp.126-135. https://doi.org/10.1016/j.matdes.2016.06.067 Go to original source...
  12. XU, M., GUO, H., WANG, Y., HOU, Y., DONG, Z., ZHANG, L. (2023). Mechanical properties and microstructural characteristics of 316L stainless steel fabricated by laser powder bed fusion and binder jetting. In: Journal of Materials Research and Technology, Vol. 24, pp. 4427-4439. https://doi.org/10.1016/j.jmrt.2023.04.069 Go to original source...
  13. KUMAR, P., JAYARAJ, R., SURYAWANSHI, J., SATWIK, U. R., MCKINELL, J., RAMAMURTY, U. (2020). Fatigue strength of additively manufactured 316L austenitic stainless steel. In: Acta Materi-alia, Vol.199, pp. 225-239. https://doi.org/10.1016/j.actamat.2020.08.033 Go to original source...
  14. LV, X., YE, F., CHENG, L., FAN, S., LIU, Y. (2019). Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. In: Ceramics International, Vol. 45, No.10, pp.12609-12624. https://doi.org/10.1016/j.ceramint.2019.04.012 Go to original source...
  15. MAO, Y., CAI, C., ZhHANG, J., HENG, Y., FENG, K., CAI, D., WEI, Q. (2023). Effect of sintering temperature on binder jetting additively manufactured stainless steel 316L: densification, microstructure evolution and mechanical properties. In: Journal of Materials Research and Technology, Vol. 22, pp. 2720-2735. https://doi.org/10.1016/j.jmrt.2022.12.096 Go to original source...
  16. BLUNK, H., SEIBEL, A. (2023). Design guidelines for metal binder jetting. In: Progress in additive manufacturing, pp. 1-8. DOI: 10.1007/s40964-023-00475-y Go to original source...
  17. ZAGO, M., LECIS, N., MARIANI, M., UCAK, O. U., CRISTOFOLINI, I. (2023). Influence of shape distortion on the precision of holes in parts fabricated by metal binder jetting. In: International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1-12. DOI: 10.1007/s12008-023-01357-x Go to original source...
  18. ZAGO, M., LECIS, N., MARIANI, M., UCAK, O. U., CRISTOFOLINI, I. (2022). Analysis of the flat-ness form error in Binder Jetting process as affected by the inclination angle. In: Metals, Vol. 12, No.3. DOI: 10.3390/met12030430 Go to original source...
  19. LECIS, N., MARIANI, M., BELTRAMI, R., EMANUELLI, L., CASATI, R., VEDANI, M., MOLINARI, A. (2021). Effects of process parameters, debinding and sintering on the microstructure of 316L stainless steel produced by binder jetting. In: Materials Science and Engineering. https://doi.org/10.1016/j.msea.2021.142108 Go to original source...
  20. NASTAC, M., KLEIN, R. L. A. (2017). Microstructure and mechanical properties comparison of 316L parts produced by different additive manufacturing processes. In: 2017 International Solid Freeform Fabrication Symposium.
  21. ZIAEE, M., CRANE, N. B. (2019). Binder jetting: A review of process, materials, and methods. In: Additive Manufacturing, Vol. 28, pp. 781-801. https://doi.org/10.1016/j.addma.2019.05.031 Go to original source...
  22. EMANUELLI, L., SEGATA, G., PERINA, M., REGOLINI, M., NICCHIOTTI, V., MOLINARI, A. (2023). Study of microstructure and mechanical properties of 17-4 PH stainless steel produced via Binder Jetting. In: Powder Metallurgy, pp.1-10. https://doi.org/10.1080/00325899.2023.2202950 Go to original source...
  23. DO, T., KWON, P., SHIN, C. S. (2017). Process development toward full-density stainless steel parts with binder jetting printing. In: International Journal of Machine Tools and Manufacture, Vol.121, pp. 50-60. https://doi.org/10.1016/j.ijmachtools.2017.04.006 Go to original source...
  24. LI, M., DU, W., Elwany, A., Pei, Z., & Ma, C. (2020). Metal binder jetting additive manufacturing: a literature review. Journal of Manufacturing Science and Engineering, 142(9), 090801. https://doi.org/10.1115/1.4047430 Go to original source...
  25. HUBER, D., VOGEL, L., FISCHER, A. (2021). The effects of sintering temperature and hold time on densification, mechanical properties and microstructural characteristics of binder jet 3D printed 17-4 PH stainless steel. In: Additive Manufacturing, Vol. 46. https://doi.org/10.1016/j.addma Go to original source...
  26. GRAY III, G. T., LIVESCU, V., RIGG, P. A., TRUJILLO, C. P., CADY, C. M., CHEN, S. R., FENSIN, S. J. (2017). Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. In: Acta Materialia, Vol. 138, pp. 140-149. https://doi.org/10.1016/j.actamat.2017.07.045 Go to original source...
  27. ENGINEERING ARCHIVES (2021). Tensile test In: Engineering archives [online]; https://www.engineeringarchives.com/les_mom_tensiletest.html

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.