Manufacturing Technology 2024, 24(2):173-182
Microtexturing for Enhanced Machining: Evaluating Tool Performance in Laser-Processed Cutting Inserts
- Faculty of Technology, Tomas Bata University in Zlin. Vavreckova 5669, 760 01 Zlin. Czech Republic
This article explores the significance of microtexturing on cutting tools for improved tribological performance and reduced friction in machining operations. Drawing inspiration from biomimetic structures, the study focuses on laser surface microtexturing and evaluates its impact on cutting forces and tool wear. Experiments involve microtextures of dots with a specific emphasis on a fiber laser-processed pattern. While long-term tests reveal the formation of negative protrusions on the textured tools, reduced variability in cutting forces suggests potential benefits for stable machining processes and increased tool longevity. The findings underscore the intricate relationship between microtexturing patterns and tool performance, offering insights into the broader implications for energy-efficient machining.
Keywords: Microtexturing, Tribology, Laser Surface Processing, Cutting Forces, Cutting Tool
Grants and funding:
This work and the project were realized with the financial support of an internal grant from the TBU in Zlín No. IGA/FT/2023/001 and IGA/FT/2024 were funded by specific university research resources
Received: December 7, 2023; Revised: April 18, 2024; Accepted: April 19, 2024; Prepublished online: April 19, 2024; Published: April 30, 2024 Show citation
References
- ©ORM, M., & KO®MÍN, P. (n.d.). Modifikace øezných nástrojù pomocí laseru. MM Prùmyslové spektrum. https://www.mmspektrum.com/clanek/modifikace-reznych-nastroju-pomoci-laseru
- GAJRANI, K. K., & SANKAR, M. R. (2017). State of the art on micro to nanotextured cutting tools. Materials Today: Proceedings, 4(2), 3776-3785. ISSN 22147853 https://doi.org/10.1016/j.matpr.2017.02.274
Go to original source...
- XIAO, G., ZHANG, Y., HE, Y., & HE, S. (2020). Optimization of belt grinding stepover for biomimetic micro-riblets surface on titanium alloy blades. The International Journal of Advanced Manufacturing Technology, 110(5-6), 1503-1513. https://doi.org/10.1007/s00170-020-05935-1
Go to original source...
- DUAN, R., DENG, J., LEI, S., GE, D., LIU, Y., & LI, X. (2019). Effect of derivative cutting on machining performance of micro-textured tools. Journal of Manufacturing Processes, 45, 544-556. https://doi.org/10.1016/j.jmapro.2019.07.037
Go to original source...
- SHARMA, V., & PANDEY, P. M. (2016). Recent advances in turning with textured cutting tools: A review. Journal of Cleaner Production, 137, 701-715. https://doi.org/10.1016/j.jclepro.2016.07.138
Go to original source...
- ZAWADA-MICHA£OWSKA, M., PIE¦KO, P., & LEGUTKO, S. (2023). Effect of the Cutting Tool on the Quality of a Machined Composite Part. Manufacturing Technology, 23(6), 870-879. https://doi.org/10.21062/mft.2023.107
Go to original source...
- KUBI©OVÁ, M., NOVÁK, M., KOUTÒÁK, R., VRBOVÁ, H., ®ALUDEK, M., & KNEDLOVÁ, J. (2022). Metrological Comparison between Heterogeneous Surfaces and their Imprints. Manufacturing Technology, 22(4), 429-435. https://doi.org/10.21062/mft.2022.046
Go to original source...
- YU, Q., ZHANG, X., MIAO, X., LIU, X., & ZHANG, L. (2020). Performances of concave and convex microtexture tools in turning of Ti6Al4V with lubrication. The International Journal of Advanced Manufacturing Technology, 109(3-4), 1071-1092. https://doi.org/10.1007/s00170-020-05656-5
Go to original source...
- ARSLAN, A., MASJUKI, H. H., KALAM, M. A., VARMAN, M., MUFTI, R. A., MOSAROF, M. H., KHUONG, L. S., & QUAZI, M. M. (2016). Surface Texture Manufacturing Techniques and Tribological Effect of Surface Texturing on Cutting Tool Performance: A Review. Critical Reviews in Solid State and Materials Sciences, 41(6), 447-481. https://doi.org/10.1080/10408436.2016.1186597
Go to original source...
- ZHAO, C., MA, C., MA, Z., YANG, J., & LI, M. (2022). Analysis of the Effect of Preset Surface Texture on Hard State Cutting. Manufacturing Technology, 22(3), 384-394. https://doi.org/10.21062/mft.2022.034
Go to original source...
- KÜMMEL, J., BRAUN, D., GIBMEIER, J., SCHNEIDER, J., GREINER, C., SCHULZE, V., & WANNER, A. (2015). Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. Journal of Materials Processing Technology, 215, 62-70. https://doi.org/10.1016/j.jmatprotec.2014.07.032
Go to original source...
- KIM, D. M., BAJPAI, V., KIM, B. H., & PARK, H. W. (2015). Finite element modeling of hard turning process via a micro-textured tool. The International Journal of Advanced Manufacturing Technology, 78(9-12), 1393-1405. https://doi.org/10.1007/s00170-014-6747-x
Go to original source...
- YU, Z., ZHANG, C., WANG, W., ZHOU, Y., & YU, H. (2015). Design of micro grove texture tool and experimental study on high-speed micro-turning. 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 1088-1093. https://ieeexplore.ieee.org/abstract/document/7237637/
Go to original source...
- JIANXIN, D., ZE, W., YUNSONG, L., TING, Q., & JIE, C. (2012). Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. International Journal of Refractory Metals and Hard Materials, 30(1), 164-172. https://doi.org/10.1016/j.ijrmhm.2011.08.002
Go to original source...
- XIE, J., LUO, M.-J., HE, J.-L., LIU, X.-R., & TAN, T.-W. (2012). Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. International Journal of Precision Engineering and Manufacturing, 13(10), 1845-1852. https://doi.org/10.1007/s12541-012-0242-9
Go to original source...
- DA SILVA, W. M., SUAREZ, M. P., MACHADO, A. R., & COSTA, H. L. (2013). Effect of laser surface modification on the micro-abrasive wear resistance of coated cemented carbide tools. Wear, 302(1-2), 1230-1240. https://doi.org/10.1016/j.wear.2013.01.035
Go to original source...
- DOBROTÃ, D., OLEKSIK, M., & CHICEA, A. L. (2022). Ecodesign of the Aluminum Bronze Cutting Process. Materials, 15(8), 2735. https://doi.org/10.3390/ma15082735
Go to original source...
- Seco Tools. (2024). Shank Toolholders - PSBNR2020K12. Seco Tools. Retrieved March 4, 2024, from https://www.secotools.com/article/p_00038404
- Seco Tools. (2024). Duratomic - General turning inserts - SNMA120416 TK0501. Seco Tools. Retrieved March 4, 2024, from https://www.secotools.com/article/p_03062550
- MediCom (2024). LASERfibre LF20T. MediCom. Retrieved March 5, 2024, from https://www.medicom.cz/prumyslove-lasery-katalog/produkty/laserove-stanice/laserfibre-lf20t/
- RODRÍGUEZ, J. M., CARBONELL, J. M., & JONSÉN, P. (2020). Numerical Methods for the Modeling of Chip Formation. Archives of Computational Methods in Engineering, 27(2), 387-412. https://doi.org/10.1007/s11831-018-09313-9
Go to original source...
- KUNDRÁK, J., SZTANKOVICS, I., & MOLNÁR, V. (2021). Accuracy and topography analysis of hard machined surfaces. Manufacturing Technology, 21(4), 512-519. https://doi.org/10.21062/mft.2021.057
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.