Manufacturing Technology 2024, 24(3):420-428 | DOI: 10.21062/mft.2024.052

Identification of Machine Tool Defects Using Laser Interferometer

Miroslav Matuš ORCID..., Vladimír Bechný ORCID..., Richard Joch ORCID..., Mário Drbúl ORCID..., Andrej Czán ORCID..., Michal Šajgalík ORCID...
Faculty of Mechanical Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

The geometric accuracy of a machine is primarily determined by the accuracy of assembly, manufactur-ing, and overall setup. Standardized procedures for assessing geometric accuracy are established and detailed in delivery protocols for various types of machining machines. To effectively monitor and ana-lyze machining machine errors, the most suitable approach is to construct a comprehensive error balance that accounts for the overall performance of the machine. This error balance methodology, a tool within the realm of system analysis, is utilized for predicting and managing systemic errors. The errors ob-served in machined components are intimately connected to the errors present in the machining ma-chines themselves. These errors are further intertwined with the design and physical properties of indi-vidual machine components, as well as their interactions. In the case of multi-axis machines, they col-lectively determine the overall accuracy of the produced components. The objective of this study is to analyze machining machine errors using the Renishaw XL-80 laser interferometric system. The findings of this study reveal that errors in machining machines can also be the result of the dynamics of the cut-ting process, which may have a significant impact on accuracy.

Keywords: Diagnostics, Machining Machines, Laser Interferometry, Machining Machine Errors
Grants and funding:

This research was funded by the University of Žilina project APVV 20-0561: “Research on the implementation of new measurement methods for the calibration of measurement systems for industrial metrology practice”, APVV-22-0328: “Design of a Methodology and its Verification for the Measurement of Selected Parameters of Ti Implants in the Manufacturing Process”, Kega project 033ŽU-4/2022: “Implementation of the language of geometric product specification in the field of coordinate 3D metrology”, and Visegrad Fund and VEGA project 1/0516/21 Research of technological characteristics of monolithic milling tools based on oxide ceramic materials

Received: October 31, 2023; Revised: May 20, 2024; Accepted: May 28, 2024; Published: July 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Matuš M, Bechný V, Joch R, Drbúl M, Czán A, Šajgalík M. Identification of Machine Tool Defects Using Laser Interferometer. Manufacturing Technology. 2024;24(3):420-428. doi: 10.21062/mft.2024.052.
Download citation

References

  1. SONG, L., ZHAO, X., ZHANG, Q., et al. (2023). A geometric error measurement method for five-axis ultra-precision machine tools. In: The International Journal of Advanced Manufacturing Technologies, Vol. 126, pp. 1379-1395. https://doi.org/10.1007/s00170-023-11181-y Go to original source...
  2. SCHWENKE, H., KNAPP, W., HAITJEMA, H., WECKENMANN, A., SCHMITT, R., DELBRESSINE, F. (2008). Geometric error measurement and compensation of machines-an update. In: CIRP annals, Vol. 57, No. 2, pp. 660-675. https://doi.org/10.1016/j.cirp.2008.09.008 Go to original source...
  3. CHEN, J. X., LIN, S. W., HE, B. W. (2014). Geometric error measurement and identification for rotary table of multi-axis machine tool using double ballbar. In: International Journal of Machine Tools and Manufacture, Vol. 77, pp. 47-55. https://doi.org/10.1016/j.ijmachtools.2013.10.004 Go to original source...
  4. WANG, H., RAN, Y., ZHANG, S., LI, Y. (2020). Coupling and decoupling measurement method of complete geometric errors for multi-axis machine tools. In: Applied Sciences, Vol. 10, No.6, pp. 2164. https://doi.org/10.3390/app10062164 Go to original source...
  5. ARCHENTI, A., LASPAS, T. (2019). Accuracy and performance analysis of machine tools. In: Precision Manufacturing, pp. 1-30. https://doi.org/10.1007/978-981-10-4912-5_7-1 Go to original source...
  6. GAO, W., IBARAKI, S., DONMEZ, M. A., KONO, D., MAYER, J. R. R., CHEN, Y., SUZUKI, N. (2023). Machine tool calibration: Measurement, modeling, and compensation of machine tool errors. In: International Journal of Machine Tools and Manufacture, Vol. 187. https://doi.org/10.1016/j.ijmachtools.2023.104017 Go to original source...
  7. Liu, X., Zhang, X., Fang, F., & Liu, S. (2016). Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning. International Journal of Machine Tools and Manufacture, 105, 45-57. Go to original source...
  8. KURIC, I., TLACH, V., CÍSAR, M., SÁGOVÁ, Z., ZAJAČKO, I. (2020). Examination of industrial robot performance parameters utilizing machine tool diagnostic methods. In: International Journal of Advanced Robotic Systems, Vol. 17, No.1. https://doi.org/10.1177/1729881420905723 Go to original source...
  9. KURIC, I., TLACH, V., SÁGOVÁ, Z., CÍSAR, M., GRITSUK, I. (2018). Measurement of industrial robot pose repeatability. In: MATEC web of conferences, Vol. 244. https://doi.org/10.1051/matecconf/201824401015 Go to original source...
  10. LIN, Z., TIAN, W., ZHANG, D., GAO, W., WANG, L. (2023). A method of geometric error identification and compensation of CNC machine tools based on volumetric diagonal error measurements. In: The International Journal of Advanced Manufacturing Technology, Vol. 124, No. 1-2, pp. 51-68. https://doi.org/10.1007/s00170-022-10484-w Go to original source...
  11. AMROUNE, S., SLAMANI, M. (2023). Analysis and modeling of thermally induced positioning errors based on laser interferometer measurements. In: Academic Journal of Manufacturing, Vol. 21, No. 3
  12. DEKAN, J., KOŠINÁR, M. (2011). Diagnostic equipments monitoring condition of machine tools. In: Mechanical engineering, Vol. 15, No. 11, pp. 106-107.
  13. BECHNÝ, V., MATUŠ, M., JOCH, R., DRBÚL, M., HOLUBJÁK, J., CZÁN, A., ŠAJGALÍK, M., MARKOVIČ, J. (2023). Design of Injection Mould Utilizing Experimental Measurements and Reverse Engineering. In: Manufacturing Technology, Vol. 23, No.5. DOI: 10.21062/mft.2023.072 Go to original source...
  14. CEDZO, M., HOLUBJÁK, J., CZÁNOVÁ, T., TIMKO, P., KOZOVÝ, P., DRBÚL, M. (2023). Analysis of the Substitutability of Conventional Technologies in the Design of a Clamping Vise for Measurement Using an Optical Measuring System. In: Manufacturing Technology, Vol. 23, No. 2, pp. 136-142. DOI: 10.21062/mft.2023.028 Go to original source...
  15. JIANG, X., MENG, T., WANG, L., LIU, C. (2020). Rapid calibration method for measuring linear axis optical paths of computer numerical control machine tools with a laser interferometer. In: The International Journal of Advanced Manufacturing Technology, Vol. 110, No. 11-12, pp. 3347-3364. https://doi.org/10.1007/s00170-020-05976-6 Go to original source...
  16. ZHANG, C., LIU, H., ZHOU, Q., WANG, Y. (2023). A support vector regression-based method for modeling geometric errors in CNC machine tools. In: The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-12212-4 Go to original source...
  17. LIN, J., LIN, W., ZHANG, X., ZHANG, Y., MI, J. (2018). Parametric Modeling of Geometric Errors for Machining Center Based on Legendre Polynomial. In: IEEE 4th Information Technology and Mechatronics Engineering Conference, pp. 1252-1256. https://doi.org/10.1109/ITOEC.2018.8740637 Go to original source...
  18. ZHA, J. et al. 2020. Volumetric error compensation of machine tool using laser tracer and machining verification. In: The International Journal of Advanced Manufacturing Technology, Vol. 108, No. 7-8, pp. 2467-2481. DOI:10.1007/s00170-020-05556-8 Go to original source...
  19. ZHA, J. et al. (2023). An accuracy evolution method applied to five-axis machining of curved surfaces. In: The International Journal of Advanced Manufacturing Technology, Vol. 125, No. 7-8, pp. 3475-3487. DOI:10.1007/s00170-023-10864-w Go to original source...
  20. ŠVÉDA, J., CHLÁDEK, Š., HORNYCH, T., KOZLOK, T., SMOLÍK, J. (2022). Increasing Machining Accuracy Based on CNC Machine Tool Correction Data by Using Ad Hoc Modification. In: Machines, Vol. 10, No. 5. https://doi.org/10.3390/machines10050288 Go to original source...
  21. RENISHAW (2023). Interferometry explained. In: Renishaw (online) https://www.renishaw.cz/cs/interferometry-explained--7854
  22. RAKSIRI, C., PARNICHKUN, M. (2004). Geometric and force errors compensation in a 3-axis CNC milling machine. In: International Journal of Machine Tools and Manufacture, Vol. 44, No. 12-13, pp. 1283-1291. https://doi.org/10.1016/j.ijmachtools.2004.04.016 Go to original source...
  23. CHEN, J. S., KOU, T. W., CHIOU, S. H. (1999). Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer. In: Precision Engineering, Vol. 23, No. 4, pp. 243-252. https://doi.org/10.1016/S0141-6359(99)00016-1 Go to original source...
  24. [LEE, E. S., SUH, S. H., SHON, J. W. (1998). A comprehensive method for calibration of volumetric positioning accuracy of CNC-machines. In: The International Journal of Advanced Manufacturing Technology, Vol. 14, pp. 43-49. https://link.springer.com/article/10.1007/BF01179416 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.