Manufacturing Technology 2024, 24(4):618-625 | DOI: 10.21062/mft.2024.073
Optimizing the Position of a Robotic Arm Using Statistical Methods
- 1 Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
- 2 Department of Plastics and Rubber, Institute of Polymer Materials, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 811 07 Bratislava, Slovakia
Robotics plays a key role in industry and its use continues to grow. Robots are used in many industries to increase efficiency, productivity, and safety of work processes. This manuscript focuses on the spatial calibration of collaborative robot arms using appropriate statistical tools. Nowadays, there are many special programming languages, simulations or virtual realities (VR), which in most cases perform calibration using matrix relations. The mathematical-statistical solution is not solved very often, and the use of linear relationships is valid only in certain parts of the workspace of the collaborative robot. The purpose of this article is to demonstrate how to find a suitable statistical method that would respect the wear of the arm mechanism in predefined positions based on the requirements of ISO 230-2:2015. Based on these measurements, it is possible to assume that optimal solutions can be obtained using a polynomial regression function. This optimization method will be searched using the Newton and Markwartel methods.
Keywords: Industrial Robots, Kinematic Models, Polynomial Regression, Error Measurement, Collaborative Robot
Grants and funding:
This work and the project were realized with financial support from the internal grant of TBU in Zlin No. IGA/FT/2024/002, funded by the resources of specific university research
Received: April 8, 2024; Revised: July 8, 2024; Accepted: August 26, 2024; Prepublished online: August 26, 2024; Published: September 1, 2024 Show citation
References
- ROBERTS, A. (2006). The History of Science Fiction; Palgrave Macmillan: New York, p. 168; ISBN 978-0-333-97022-5.
Go to original source...
- FAN, Y., ZHANG, Y., JIE, H., YUE, T., BI, Q., & WANG, Y. (2022). Calibration for a robotic drilling system with secondary encoders based on a novel enhanced rigid-flexible coupling model. Industrial Robot: the international journal of robotics research and application, 49(6), 1101-1115. https://doi.org/10.1108/IR-12-2021-0297.
Go to original source...
- JIANG, Y., YU, L., JIA, H., ZHAO, H., XIA, H., & WANG, Y. (2020). Absolute Positioning Accuracy Improvement in an Industrial Robot. Sensors, 20(16), 1101-1115. https://doi.org/10.3390/s20164354.
Go to original source...
- BENES, P., HLADIK, J., PELIKAN, J., NEUSSER, Z., NECAS, M., SVEDA, J., VALASEK, M., SIKA, Z. (2022). Calibration of the Robotic Arm with Corrections using Local Linear Neuro-Fuzzy Models. MM Science Journal, 2022(5), 288-289. https://doi.org/10.17973/MMSJ.2022_12_2022160.
Go to original source...
- PONIKELSKÝ, J., ČERNOHLÁVEK, V., ŠTĚRBA, J., & HOUŠKA, P. (2023). Research of Robots in Cooperative Mode in Human Body Part Detection. Manufacturing Technology, 23(1), 99-109. https://doi.org/10.21062/mft.2023.007.
Go to original source...
- GAO, M., CAI, Q., ZHENG, B., SHI, J., NI, Z., WANG, J., LIN, H., YE, W., & YANG, R. (2021). A Hybrid YOLOv4 and Particle Filter Based Robotic Arm Grabbing System in Nonlinear and Non-Gaussian Environment. Electronics, 10(10), 288-289. https://doi.org/10.3390/electronics10101140.
Go to original source...
- CHENG, G., LIANG, Y., LI, C., LIU, P. X., LI, D., PANG, Z., YAN, Z., YE, W., & YANG, R. (2018). Combined linear and non-linear controller design for motor position regulation. Electronics Letters, 54(5), 288-289. https://doi.org/10.1049/el.2017.4814.
Go to original source...
- DU, G., LIANG, Y., LI, C., LIU, P. X., LI, D., PANG, Z., YAN, Z., YE, W., & YANG, R. (2020). Online Robot Kinematic Calibration Using Hybrid Filter with Multiple Sensors. IEEE Transactions on Instrumentation and Measurement, 69(9), 7092-7107. https://doi.org/10.1109/TIM.2020.2976277.
Go to original source...
- ZHANG, Y., LIANG, W., YUAN, M., HE, H., TAN, J., PANG, Z., YAN, Z., YE, W., & YANG, R. (2022). Monocular Visual-Inertial and Robotic-Arm Calibration in a Unifying Framework. IEEE/CAA Journal of Automatica Sinica, 9(1), 146-159. https://doi.org/10.1109/JAS.2021.1004290.
Go to original source...
- WU, J., WANG, M., JIANG, Y., YI, B., FAN, R., LIU, M., YAN, Z., YE, W., & YANG, R. (2022). Simultaneous Hand-Eye/Robot-World/Camera-IMU Calibration. IEEE/ASME Transactions on Mechatronics, 27(4), 2278-2289. https://doi.org/10.1109/TMECH.2021.3103995.
Go to original source...
- LATTANZI, L., CRISTALLI, C., MASSA, D., BORIA, S., LÉPINE, P., PELLICCIARI, M., YAN, Z., YE, W., & YANG, R. (2020). Geometrical calibration of a 6-axis robotic arm for high accuracy manufacturing task. The International Journal of Advanced Manufacturing Technology, 111(7-8), 1813-1829. https://doi.org/10.1007/s00170-020-06179-9.
Go to original source...
- ZHENG, L., ZHANG, Z., WANG, Z., BAO, K., YANG, L., YAN, B., YAN, Z., YE, W., & YANG, R. (2021). A multiple closed-loops robotic calibration for accurate surgical puncture. The International Journal of Medical Robotics and Computer Assisted Surgery, 17(3), 143692-143705. https://doi.org/10.1002/rcs.2242.
Go to original source...
- ZHAO, W., KLIMCHIK, A., PASHKEVICH, A., CHABLAT, D., CZÁNOVÁ, T., & ŠAJGALÍK, M. (2022). Non-linear stiffness behavior of planar serial robotic manipulators. Mechanism and Machine Theory, 172(6), 143692-143705. https://doi.org/10.1016/j.mechmachtheory.2022.104783.
Go to original source...
- MUNOZ-BANON, M. A., CANDELAS, F. A., TORRES, F., ZHAO, L., CZÁNOVÁ, T., & ŠAJGALÍK, M. (2020). Targetless Camera-LiDAR Calibration in Unstructured Environments. IEEE Access, 8(6), 143692-143705. https://doi.org/10.1109/ACCESS.2020.3014121.
Go to original source...
- ABANAY, A., MASMOUDI, L., EL ANSARI, M., ZHAO, L., CZÁNOVÁ, T., & ŠAJGALÍK, M. (2022). A calibration method of 2D LIDAR-Visual sensors embedded on an agricultural robot. Optik, 249(6), 18750-18760. https://doi.org/10.1016/j.ijleo.2021.168254.
Go to original source...
- FAN, S., YU, Y., XU, M., ZHAO, L., CZÁNOVÁ, T., & ŠAJGALÍK, M. (2023). High-Precision External Parameter Calibration Method for Camera and Lidar Based on a Calibration Device. IEEE Access, 11(6), 18750-18760. https://doi.org/10.1109/ACCESS.2023.3247195.
Go to original source...
- RAHMAN, S. M. M., XU, N., FU, C., DENG, S., CZÁNOVÁ, T., & ŠAJGALÍK, M. (2024). Dynamic Affect-Based Motion Planning of a Humanoid Robot for Human-Robot Collaborative Assembly in Manufacturing. Electronics, 13(6), 504-512. https://doi.org/10.3390/electronics13061044.
Go to original source...
- Procedure standard - ISO 230 Test Code for Machine Tools; Part 2: Determination of Accuracy and Repeatability of Positioning Numerically Controlled Axes, ISO Geneva, 2015.
- CEDZO, M., JOCH, R., TIMKO, P., HOLUBJÁK, J., CZÁNOVÁ, T., & ŠAJGALÍK, M. (2023). Topology Optimization of Gripping Jaws of Industrial Robot. Manufacturing Technology, 23(1), 25-31. https://doi.org/10.21062/mft.2023.009.
Go to original source...
- QIAN, P., XU, N., FU, C., & DENG, S. (2023). Mapping and Autonomous Obstacle Avoidance of Mobile Robot Based on ROS Platform. Manufacturing Technology, 23(4), 504-512. https://doi.org/10.21062/mft.2023.064.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.