Manufacturing Technology 2024, 24(6):960-968 | DOI: 10.21062/mft.2024.095
Statistical Analysis and Machine Learning-based Modelling of Kerf width in CO2 Laser Cutting of PMMA
- Faculty of Mechanical Engineering - Skopje, Ss. Cyril and Methodius University in Skopje, Ul. Ruger Boskovic 18, 1000 Skopje, North Macedonia
Recently, engineering polymers like PMMA have increasingly replaced traditional materials in industry where feasible, with CO2 laser cutting gaining attention for its high quality and speed in processing these materials. Achieving precise cuts is crucial for product accuracy, with kerf width serving as a key quality attribute to ensure quality and functionality of the final product. This study focuses on the im-pact of three critical process variables: stand-off distance, laser power, and cutting speed, on the kerf width in CO2 laser cutting of PMMA. Through a full-factorial experiment, the process parameters are systematically varied to understand their individual and interaction effects on the cutting process. The kerf width is measured as an indicator of precision using an optical microscope to evaluate the quality of the laser cuts. To address the non-linear relationships between these process parameters and kerf width, several machine learning models were utilized. Performance comparisons indicated that the Artificial Neural Network (ANN) model provided the highest accuracy, with R² values of 0.98 for the validation dataset and 0.95 for the testing dataset. The optimized ANN model offers a robust tool for parameter optimization, facilitating the determination of optimal settings to achieve the desired kerf width while ensuring productivity.
Keywords: CO2 laser cutting, Kerf width, Machine learning, Process modelling
Received: July 15, 2024; Revised: November 12, 2024; Accepted: November 26, 2024; Prepublished online: December 16, 2024; Published: December 21, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- KHOSHAIM, A. B., ELSHEIKH, A. H., MOUSTAFA, E. B., BASHA, M., SHOWAIB, E. A. (2021). Experimental investigation on laser cutting of PMMA sheets: Effects of process factors on kerf characteristics. Journal of Materials Research and Technology, vol. 11, pp. 235-246. DOI: https://doi.org/10.1016/j.jmrt.2021.01.012.
Go to original source...
- KAMAL, A., ELSHEIKH, A. H., SHOWAIB, E. (2020). Pre-Cracking techniques of polymeric materials: An overview. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd. DOI: 10.1088/1757-899X/973/1/012028.
Go to original source...
- VAKILI-TAHAMI, F., ADIBEIG, M. R., HASSANIFARD, S. (2019). Optimizing creep lifetime of friction stir welded PMMA pipes subjected to combined loadings using rheological model. Polym Test, vol. 79, p. 106049. DOI: https://doi.org/10.1016/j.polymertesting.2019.106049.
Go to original source...
- PAWAR, E. A Review Article on Acrylic PMMA. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN, vol. 13, no. 2, pp. 1-04. DOI: 10.9790/1684-1302010104.
Go to original source...
- ZAFAR, M. S. (2020). Prosthodontic applications of polymethyl methacrylate (PMMA): An update. MDPI AG. DOI: 10.3390/polym12102299.
Go to original source...
- DÍEZ-PASCUAL, A. M. (2022). PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. MDPI. DOI: 10.3390/ijms231810288.
Go to original source...
- FEUSER, P. E., et al. (2014). Synthesis and Characterization of Poly(Methyl Methacrylate) PMMA and Evaluation of Cytotoxicity for Biomedical Application. Macromol Symp, vol. 343, no. 1, pp. 65-69. DOI: https://doi.org/10.1002/masy.201300194.
Go to original source...
- MISHRA, S., SEN, G. (2011). Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int J Biol Macromol, vol. 48, no. 4, pp. 688-694. DOI: https://doi.org/10.1016/j.ijbiomac.2011.02.013.
Go to original source...
- HAZIM, A., ABDULJALIL, H. M., HASHIM, A. (2021). Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications. Transactions on Electrical and Electronic Materials, vol. 22, no. 6, pp. 851-868. DOI: 10.1007/s42341-021-00308-1.
Go to original source...
- ALI, U., Bt. A. KARIM, K. J., BUANG, N. A. (2015). A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polymer Reviews, vol. 55, no. 4, pp. 678-705. DOI: 10.1080/15583724.2015.1031377.
Go to original source...
- SEJC, P., VANKO, B., GABRISOVA, Z. (2021). REW Application Possibilities for the Production of Combined Metal - Plastic Joints. Manufacturing Technology Journal, vol. 21, no. 5, pp. 682-690. DOI: 10.21062/mft.2021.082.
Go to original source...
- HADDADI, E., MORADI, M., KARIMZAD GHAVIDEL, A., MEIABADI, S. (2019). Experimental and parametric evaluation of cut quality characteristics in CO2 laser cutting of polystyrene. Optik (Stuttg), vol. 184, pp. 103-114. DOI: https://doi.org/10.1016/j.ijleo.2019.03.040.
Go to original source...
- CHOUDHURY, I. A., SHIRLEY, S. (2010). Laser cutting of polymeric materials: An experimental investigation. Opt Laser Technol, vol. 42, no. 3, pp. 503-508. DOI: https://doi.org/10.1016/j.optlastec.2009.09.006.
Go to original source...
- KUCEROVA, L., RACICKY, A., TICHA, I. (2020). Analysis of affected surface zone created by different cutting technologies. Manufacturing Technology Journal, vol. 20, no. 6, pp. 785-790. DOI: 10.21062/mft.2020.117.
Go to original source...
- VASILESKA, E., PACHER, M., PREVITALI, B. (2022). In-line monitoring of focus shift by kerf width detection with coaxial thermal imaging during laser cutting. International Journal of Advanced Manufacturing Technology, vol. 118, no. 7-8, pp. 2587-2600. DOI: 10.1007/s00170-021-07893-8.
Go to original source...
- DUBEY, A. K., YADAVA, V. (2008). Optimization of kerf quality during pulsed laser cutting of aluminium alloy sheet. J Mater Process Technol, vol. 204, no. 1, pp. 412-418. DOI: https://doi.org/10.1016/j.jmatprotec.2007.11.048.
Go to original source...
- KARATAS, C., KELES, O., USLAN, I., USTA, Y. (2006). Laser cutting of steel sheets: Influence of workpiece thickness and beam waist position on kerf size and stria formation. J Mater Process Technol, vol. 172, no. 1, pp. 22-29. DOI: 10.1016/j.jmatprotec.2005.08.017.
Go to original source...
- SHARIFI, M., AKBARI, M. (2019). Experimental investigation of the effect of process parameters on cut-ting region temperature and cutting edge quality in laser cutting of AL6061T6 alloy. Optik (Stuttg), vol. 184, pp. 457-463. DOI: https://doi.org/10.1016/j.ijleo.2019.04.105.
Go to original source...
- THAWARI, G., SUNDAR, J. K. S., SUNDARARAJAN, G., JOSHI, S. V. (2005). Influence of process parameters during pulsed Nd:Yag laser cutting of nickel-base superalloys. J Mater Process Technol, vol. 170, no. 1, pp. 229-239. DOI: https://doi.org/10.1016/j.jmatprotec.2005.05.021.
Go to original source...
- ELTAWAHNI, H. A., HAGINO, M., BENYOUNIS, K. Y., INOUE, T., OLABI, A. G. (2012). Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L. Opt Laser Technol, vol. 44, no. 4, pp. 1068-1082. DOI: https://doi.org/10.1016/j.optlastec.2011.10.008.
Go to original source...
- ADALARASAN, R., SANTHANAKUMAR, M., THILEEPAN, S. (2017). Selection of optimal machining parameters in pulsed CO2 laser cutting of Al6061/Al2O3 composite using Taguchi-based response surface methodology (T-RSM). The International Journal of Advanced Manufacturing Technology, vol. 93, no. 1, pp. 305-317. DOI: 10.1007/s00170-016-8978-5.
Go to original source...
- SYKOROVA, L., KNEDLOVA, J., PATA, V., KUBISOVA, M. (2018). Technological Parameters and PMMA Surface Structure. Manufacturing Technology Journal, vol. 18, no. 5, pp. 856-860. DOI: 10.21062/ujep/190.2018/a/1213-2489/MT/18/5/856.
Go to original source...
- ZRAK, A., MESKO, J., SLADEK, A., VICEN, M. (2016). Evaluation of Properties from the Cutting Surface after Applying Laser Beam Technology Using Different Scales of Cutting Speed. Manufacturing Technology Journal, vol. 16, no. 6, pp. 1348-1354. DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/6/1348.
Go to original source...
- KUBISOVA, M., PATA, V., SYKOROVA, L., KNEDLOVA, J. (2017). Influence of Laser Beam on Polymer Material. In: Manufacturing Technology Journal, Vol. 17, No. 5, pp. 742 - 746. Springer. DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/742.
Go to original source...
- ALSAADAWY, M., DEWIDAR, M., SAID, A., MAHER, I., SHEHABELDEEN, T. A. (2024). A comprehensive review of studying the influence of laser cutting parameters on surface and kerf quality of metals. Springer Science and Business Media Deutschland GmbH. DOI: 10.1007/s00170-023-12768-1.
Go to original source...
- YILBAS, B. S. (2008). Laser cutting of thick sheet metals: Effects of cutting parameters on kerf size variations. In: J Mater Process Technol, Vol. 201, No. 1, pp. 285 - 290. Elsevier. DOI: https://doi.org/10.1016/j.jmatprotec.2007.11.265.
Go to original source...
- KHOSHAIM, A. B., ELSHEIKH, A. H., MOUSTAFA, E. B., BASHA, M., SHOWAIB, E. A. (2021). Experimental investigation on laser cutting of PMMA sheets: Effects of process factors on kerf characteristics. In: Journal of Materials Research and Technology, Vol. 11, pp. 235 - 246. Elsevier. DOI: https://doi.org/10.1016/j.jmrt.2021.01.012.
Go to original source...
- NGUYEN, V., ALTARAZI, F., TRAN, T. (2022). Optimization of Process Parameters for Laser Cutting Process of Stainless Steel 304: A Comparative Analysis and Estimation with Taguchi Method and Response Surface Methodology. In: Math Probl Eng, Vol. 2022, No. 1, p. 6677586. Hindawi. DOI: https://doi.org/10.1155/2022/6677586.
Go to original source...
- TERCAN, H., MEISEN, T. (2022). Machine learning and deep learning based predictive quality in manufacturing: a systematic review. In: J Intell Manuf, Vol. 33, No. 7, pp. 1879 - 1905. Springer. DOI: 10.1007/s10845-022-01963-8.
Go to original source...
- KUSUMA, A. I., HUANG, Y.-M. (2022). Performance comparison of machine learning models for kerf width prediction in pulsed laser cutting. In: The International Journal of Advanced Manufacturing Technology, Vol. 123, No. 7, pp. 2703 - 2718. Springer. DOI: 10.1007/s00170-022-10348-3.
Go to original source...
- BAKHTIYARI, A. N., WANG, Z., WANG, L., ZHENG, H. (2021). A review on applications of artificial intelligence in modeling and optimization of laser beam machining. In: Opt Laser Technol, Vol. 135, p. 106721. Elsevier. DOI: https://doi.org/10.1016/j.optlastec.2020.106721.
Go to original source...
- TERCAN, H., KHAWLI, T., EPPELT, U., BÜSCHER, C., MEISEN, T., JESCHKE, S. (2017). Improving the laser cutting process design by machine learning techniques. In: Production Engineering, Vol. 11, pp. 1 - 12. Springer. DOI: 10.1007/s11740-017-0718-7.
Go to original source...
- ÜRGÜN, S., YİĞİT, H., FIDAN, S., SINMAZÇELİK, T. (2024). Optimization of Laser Cutting Parameters for PMMA Using Metaheuristic Algorithms. In: Arab J Sci Eng, Springer. DOI: 10.1007/s13369-023-08627-6.
Go to original source...
- HWANG, Y.-T., YANG, J.-M. (2024). Laser Cutting Time Estimate for Sheet Metal Parts of Various Geometries by Machine Learning Approach.
Go to original source...
- IM, D., JEONG, J. (2021). R-cnn-based large-scale object-defect inspection system for laser cutting in the automotive industry. In: Processes, Vol. 9, No. 11, p. 2043. MDPI. DOI: 10.3390/pr9112043.
Go to original source...
- ANJUM, A., SHAIKH, A. A., TIWARI, N. (2023). Experimental investigations and modeling for multi-pass laser micro-milling by soft computing-physics informed machine learning on PMMA sheet using CO2 laser. In: Opt Laser Technol, Vol. 158, p. 108922. Elsevier. DOI: https://doi.org/10.1016/j.optlastec.2022.108922.
Go to original source...
- ALHAWSAWI, A. M., MOUSTAFA, E. B., FUJII, M., BANOQITAH, E. M., ELSHEIKH, A. (2023). Kerf characteristics during CO2 laser cutting of polymeric materials: Experimental investigation and ma-chine learning-based prediction. In: Engineering Science and Technology, an International Journal, Vol. 46, p. 101519. Elsevier. DOI: https://doi.org/10.1016/j.jestch.2023.101519.
Go to original source...
- NAJJAR, I. M. R., SADOUN, A. M., ABD ELAZIZ, M., ABDALLAH, A. W., FATHY, A., ELSHEIKH, A. H. (2022). Predicting kerf quality characteristics in laser cutting of basalt fibers reinforced polymer composites using neural network and chimp optimization. In: Alexandria Engineering Journal, Vol. 61, No. 12, pp. 11005 - 11018. Elsevier. DOI: https://doi.org/10.1016/j.aej.2022.04.032.
Go to original source...
- ARGILOVSKI, A., VASILESKA, E., JOVANOSKI, B. (2023). ENHANCING MANUFACTURING EFFICIENCY: A LEAN INDUSTRY 4.0 APPROACH TO RETROFITTING. In: Mechanical Engineering-Scientific Journal, Vol. 41, No. 2, pp. 123 - 129. DOI: 10.55302/mesj23412672123a.
Go to original source...
- YANG, R., HUANG, Y., RONG, Y., WU, C., LIU, W., CHEN, L. (2022). Evaluation and classification of CFRP kerf width by acoustic emission in nanosecond laser cutting. In: Opt Laser Technol, Vol. 152, p. 108165. Elsevier. DOI: https://doi.org/10.1016/j.optlastec.2022.108165.
Go to original source...
- DE ANDRADE, A. C. B., AGUIAR, P. R., VIERA, M. A. A., ALEXANDRE, F. A., JUNIOR, P. O., DOTTO, F. R. L. (2020). Monitoring of the Ceramic Kerf During the Laser Cutting Process through Pie-zoelectric Transducer. MDPI AG. DOI: 10.3390/ecsa-6-06529.
Go to original source...
- STEEN, M. J. (2010). Laser Material Processing. Springer, London.
Go to original source...
- SON, S., LEE, D. (2020). The effect of laser parameters on cutting metallic materials. In: Materials, Vol. 13, No. 20, pp. 1 - 15. MDPI. DOI: 10.3390/ma13204596.
Go to original source...
- FAUSETT, L. V. (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall.
- SHARMA, A., JOSHI, P. (2023). Comparative analysis of laser profile cutting of Ni-based superalloy sheet using RSM and ANN. In: International Journal on Interactive Design and Manufacturing (IJIDeM). Springer. DOI: 10.1007/s12008-023-01610-3.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.