Manufacturing Technology 2025, 25(4):489-499 | DOI: 10.21062/mft.2025.058

Geometric Accuracy of Elements Made Using the FFF Method from Selected Polymers with Different Internal Structure Densities

Małgorzata Gontarz-Kulisiewicz ORCID..., Jacek Bernaczek ORCID..., Mariusz Dębski ORCID...
Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology. Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

Due to their availability and ease of use, additive techniques are experiencing dynamic development. This applies to both the industrial sector and individual recipients. The authors of numerous publications address in their research the subject of the influence of selected printing process parameters on the strength of models, usually made using selected MEX (Material Extrusion) methods. Among the MEX methods, the most frequently chosen are the FFF (Fused Filament Fabrication) and FDM (Fused Deposition Modeling) methods. This is due to the high availability and low cost of devices using the methods mentioned above and the high availability of polymer materials. In their research, the authors increasingly consider the influence of the internal structure of the samples and their density on selected strength parameters, often without considering whether they affect the geometric accuracy of sample mapping. For the above reasons, it was decided in the article to conduct research covering the indicated subject using the example of standardized samples made of six selected polymers used in the FFF method.

Keywords: MEX method, FFF method, Internal structure, Geometric accuracy, 3D printing

Received: May 18, 2025; Revised: October 15, 2025; Accepted: October 16, 2025; Prepublished online: November 6, 2025; Published: November 11, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gontarz-Kulisiewicz M, Bernaczek J, Dębski M. Geometric Accuracy of Elements Made Using the FFF Method from Selected Polymers with Different Internal Structure Densities. Manufacturing Technology. 2025;25(4):489-499. doi: 10.21062/mft.2025.058.
Download citation

References

  1. BULANDA, K., OLEKSY, M., OLIWA, R., BUDZIK, G., PRZESZŁOWSKI, Ł., FAL, J., JESIONOWSKI, T. (2021). Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology. In: Polymer, Vol. 13. https://doi.org/10.3390/polym13152455 Go to original source...
  2. BUDZIK, G., MAGNISZEWSKI, M., PRZESZŁOWSKI, Ł., OLEKSY, M., OLIWA, J., BERNACZEK, J. (2018). Torsional strength testing of machine elements manufacture by incremental technology from polymeric materials (Rapid communication). In: Polimery, Vol. 63, No. 11-12, pp. 830-832. https://doi.org/10.14314/polimery.2018.11.13 Go to original source...
  3. DĘBSKI, M., MAGNISZEWSKI, M., BERNACZEK, J., PRZESZŁOWSKI, Ł., GONTARZ, M., KIEŁBICKI, M. (2021). Influence of torsion on the structure of machine elements made of polymeric materials by 3D printing. In: Polimery, Vol. 66, No. 5, pp. 298-303. https://doi.org/10.14314/polimery.2021.5.3 Go to original source...
  4. SENKERIK, V., BEDNARIK, M., JANOSTIK, V., KARHANKOVA M., MIZERA, A. (2024). Analysis of Extrusion Process Parameters in PLA Filament Production for FFF Technology. In: Manufacturing Technology, Vol. 24, No. 2, pp. 265-271. DOI: 10.21062/mft.2024.037 Go to original source...
  5. KAYGUSUZ, B., ÖZERINÇ, S. (2019). Improving the ductility of polyactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. In: Journal of Applied Polymer Science, Vol. 136, Issue 43. https://doi.org/10.1002/app.48154 Go to original source...
  6. SINGH, P. K., MAUSAM, K., ISLAM, A. (2021). Achieving better results for increasing strength and life time of gears in industries using various composite materials. In: Materials Today: Proceedings, Vol. 45, pp. 3068-3074. https://doi.org/10.1016/j.matpr.2020.12.062 Go to original source...
  7. BUDZIK, G., DZIUBEK, T., PRZESZŁOWSKI Ł. P., SOBOLEWSKI, B., DĘBSKI, M., GONTARZ, M. E. (2023). Study of unidirectional torsion of samples with different internal structures manufactured in the MEX process. In: Rapid Prototyping Journal, Vol. 29, No. 8, pp. 1604-1619. https://doi.org/10.1108/RPJ-09-2022-0332 Go to original source...
  8. NAHAR, C., GURRALA, P. K. (2022). Transient thermal finite-element analysis of fused filament fabrication process. In: Rapid Prototyping Journal, Vol. 28, No. 6, pp. 1097-1110. https://doi.org/10.1108/RPJ-05-2021-0104 Go to original source...
  9. DEMIR, S., YÜKSEL, C. (2023). Evaluation of effect and optimizing of process parameters for fused deposition modeling parts on tensile properties via Taguchi method. In: Rapid Prototyping Journal, Vol. 29, No. 4, pp. 720-730. https://doi.org/10.1108/RPJ-06-2022-0201 Go to original source...
  10. ALEXOPOULOU, W. E., CHRISTODOULOU, I., T., MARKOPOULOS, A. P. (2024). Investigation of Printing Speed Impact on the Printing Accuracy of Fused Filament Fabrication (FFF) ABS Artefacts. In: Manufacturing Technology, Vol. 24, No. 3, pp. 333-337. DOI: 10.21062/mft.2024.042 Go to original source...
  11. RAO, V. D. P., RAJJV, P., GEETHIKA, N. (2019). Effect of fused deposition modeling (FDM) process parameters on tensile strength of carbon fibre PLA. In: Materials Today: Proceedings, Vol. 18, Part 6, pp. 2012-2018. https://doi.org/10.1016/j.matpr.2019.06.009 Go to original source...
  12. TRAN, T. Q., DENG, X., CANTURRI, C., THAM, C. L., NG, F. L. (2023). Highly-dense acrylonitrile butadiene styrene speciments fabricated by overheat material extrusion 3D printing, In: Rapid Prototyping Journal, Vol. 29, No. 4, pp. 687-696. https://doi.org/10.1108/RPJ-06-2022-0184 Go to original source...
  13. BHOSALE, V., GAIKWAD, P., DHERE, S., SUTAR, C., RAYKAR, S. J. (2022). Analysis of process parameters of 3D printing for surface finish, printing time and tensile strength. In: Materials Today: Proceedings, Vol. 59, Part 1, pp. 841-846. https://doi.org/10.1016/j.matpr.2022.01.210 Go to original source...
  14. BˇCZKOWSKI, M., MARCINIAK D., BIELIŃSKI, M. (2021). Influence of FFF process parameters and macrostructure homogenity on PLA impact strength (Rapid communication). In: Polimery, Vol. 66, No. 9, pp. 1-4. DOI: dx.doi.org/10.14314/polimery.2021.9.XXX Go to original source...
  15. DEV, S., SRIVASTAVA, R. (2020). Experimental investigation and optimization of FDM process parameters for material and mechanical strength. In: Materials Today: Proceeding, Vol. 26, Part 20, pp. 1995-1999. https://doi.org/10.1016/j.matpr.2020.02.435 Go to original source...
  16. FONTANA, L., MINETOLA, P., IULIANO, L., RIFUGGIATO, S., KHANDPUR, M. S., STIUSO, V. (2022). An investigation of the influence of 3d printing parameters on the tensile strength of PLA material. In: Materials Today: Proceedings, Vol. 57, Part 2, pp. 657-663. https://doi.org/10.1016/j.matpr.2022.02.078 Go to original source...
  17. BECHNÝ, V., MATU©, M., JOCH, R., DRBÚL, M., CZÁN, A., ©AJGALÍK, M., NOVÝ, F. (2024). Influence of the Orientation of Parts Produced by Additive Manufacturing on Mechanical Properties. In: Manufacturing Technology, Vol. 24, No. 1, pp. 2-8. DOI: 10.21062/mft.2024.021 Go to original source...
  18. DOSHI, M., MAHALE, A., SINGH, S. K., DESHMUKH, S. (2022). Printing parameters and materials affecting mechanical properties FDM-3D printed Parts: perspective and prospects. In: Materials Today: Proceedings, Vol. 50, Part 5, pp. 2269-2275. https://doi.org/10.1016/j.matpr.2021.10.003 Go to original source...
  19. BIROSZ, M. T., LEDENYÁK, D., ANDÓ, M. (2022). Effect of FDM infill patterns on mechanical properties. In: Polymer Testing, Vol. 113. https://doi.org/10.1016/j.polymertesting.2022.107654 Go to original source...
  20. PERNET, B., NAGEL, J. K., ZHANG, H. (2022). Compressive Strength Assessment of 3D Printing In-fill Patterns. In: Procedia CIRP, Vol. 105, pp. 682-687. https://doi.org/10.1016/j.procir.2022.02.114 Go to original source...
  21. NACE, S. E., TIERNAN, J., HOLLAND, D., ANNAIDH, A.N. (2021). A comparative analysis of the compression characteristics of a thermoplastic polyurethane 3D printed in four infill patterns for comfort applications. In: Rapid Prototyping Journal, Vol. 27, No. 11, pp. 24-36. https://doi.org/10.1108/RPJ-07-2020-0155 Go to original source...
  22. NAIK, M., THAKUR, D. G., CHANDEL, S. (2022). An insight into the effect of printing orientation on tensile strength of multi-infill pattern 3D printed specimen: Experimental study. In: Materials Today: Pro-ceedings, Vol. 62, Part 14, pp. 7391-7395. https://doi.org/10.1016/j.matpr.2022.02.305 Go to original source...
  23. BERNACZEK, J., DĘBSKI, M., GONTARZ-KULISIEWICZ, M. (2024). Analysis of the Torsional Strength of Selected Photopolymers Additively Manufactured Using Polyjet Technology. In: Manufacturing Technology, Vol. 24, No. 6, pp. 865-870. DOI: 10.21062/mft.2024.094 Go to original source...
  24. PERNICA, J., VODÁK, M., ©AROCKÝ, R., ©USTR, M., DOSTÁL, P., ČERNY, M., DOBROCKÝ, D. (2022). Mechanical Properties of Recycled Polymer Materials in Additive Manufacturing. In: Manufacturing Technology, Vol. 22, No. 2, pp. 200-203. DOI: 10.21062/mft.2022.017 Go to original source...
  25. JABBAR, M. A. (2023). A Design of Experiment Analysis Approach to Improve Part Quality in 3D Printing. In: Manufacturing Technology, Vol. 23, No. 3, pp. 290-297. DOI: 10.21062/mft.2023.034 Go to original source...
  26. FALES, A., ČERNOHLÁVEK, V., SUSZYNSKI, M., ©TĚRBA, J., ZDRÁHAL, T., NOCAR, D. (2025). Experimental Measurement and Testing of 3D Printed Parts in Terms of the Material Used. In: Manufacturing Technology, Vol. 25, No. 2, pp. 174-184. DOI: 10.21062/mft.2025.016 Go to original source...
  27. PN-EN ISO 527-1:2020: Plastics-Determination of tensile properties-Part 1: General principles (https://sklep.pkn.pl/)
  28. PN-EN ISO 527-2:2012: Plastics-Determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics (https://sklep.pkn.pl/)
  29. https://f3dfilament.com/

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.