Manufacturing Technology 2025, 25(6):728-734 | DOI: 10.21062/mft.2025.078

Tensile Behaviour of Zn–Mg Heterostructured Materials for Biodegradable Implant Applications

Anna Boukalová ORCID...1, David Nečas ORCID...1, Drahomír Dvorský ORCID...2, Jan ©»ovíček ORCID...1, Jan Pokorný ORCID...1, Jiří Kubásek ORCID...1
1 Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 6, Prague 6, 166 28, Czech Republic
2 Department of Physics, Czech Academy of Science, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic

Biodegradable zinc-based alloys have recently attracted attention as promising candidates for temporary implant applications due to their favourable corrosion behaviour and biocompatibility. In this study, three materials — pure Zn, Zn–1Mg alloy, and a Zn + Zn–1Mg composite — were fabricated via powder metallurgy and extrusion to evaluate their microstructural characteristics and tensile performance. The composite material was designed to combine ductile Zn regions with a reinforcing Zn–1Mg network, aiming to achieve a balance of strength and ductility. Microstructural analysis revealed coarse-grained Zn regions surrounded by ultrafine-grained Zn–1Mg areas containing Mg₂Zn₁₁ particles, with oxide shells present at the Zn/Zn–1Mg interfaces. Tensile testing showed improvement in mechanical performance compared to the individual constituents. However, the oxide shells prevented effective load transfer between the fine-grained and coarse-grained areas of the microstructure.

Keywords: Zinc Alloys, Heterostructure, Biodegradable, Microstructure, Tensile Properties
Grants and funding:

This research was supported by the Czech Science Foundation (project no. 21–11439K) and by the project "Mechanical Engineering of Biological and Bio-inspired Systems", funded as project No. CZ.02.01.01/00/22_008/0004634 by Programme Johannes Amos Comenius, call Excellent Research. This research was also supported by the Czech Science Foundation (project no. 25-16144S). We also thank the Specific university research, project A1_FCHT_2025_011 and A2_FCHT_2025_046

Received: August 28, 2025; Revised: December 1, 2025; Accepted: December 6, 2025; Prepublished online: December 22, 2025; Published: December 23, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Boukalová A, Nečas D, Dvorský D, ©»ovíček J, Pokorný J, Kubásek J. Tensile Behaviour of Zn–Mg Heterostructured Materials for Biodegradable Implant Applications. Manufacturing Technology. 2025;25(6):728-734. doi: 10.21062/mft.2025.078.
Download citation

References

  1. KUBÁSEK, J.; VOJTĚCH, D. (2012). Zn-based alloys as an alternative biodegradable materials. In: Proc. Metal, Vol. 5, 23-25.
  2. VOJTECH, D.; KUBASEK, J.; SERAK, J.; NOVAK, P. (2011). Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. In: Acta Biomater, Vol. 7, 9, 3515-3522. Go to original source...
  3. LOVA©I, T.; PINC, J.; VOŇAVKOVÁ, I. (2019). Zinc-based Degradable Biomaterials - Limitations and Enhancements. In: Manufacturing Technology, Vol. 19, 4, 632-636. Go to original source...
  4. DVORSKÝ, D.; KUBÁSEK, J.; VOJTĚCH, D. (2020). Microstructure, mechanical and corrosion properties of extruded milled magnesium powder. In: Manufacturing Technology, Vol. 20, 6, 708-713. Go to original source...
  5. VOJTĚCH, D.; KUBÁSEK, J.; VODĚROVÁ, M. (2012). Structural, mechanical and in vitro corrosion characterisation of as-cast magnesium based alloys for temporary biodegradable medical implants. In: Manufacturing technology, Vol. 12, 13, 285-292. Go to original source...
  6. KUBÁSEK, J.; DVORSKÝ, D.; ČAPEK, J.; MARKÉTA, S.; KLÁRA, H.; VOJTĚCH, D. (2020). Zinc alloys as prospective materials for biodegradable medical devices. In: Manufacturing Technology, Vol. 20, 6, 779-784. Go to original source...
  7. NEČAS, D.; HYBÁ©EK, V.; PINC, J.; ©KOLÁKOVÁ, A.; VOŇAVKOVÁ, I.; HOSOVÁ, K.; ZLÁMAL, M.; BOUKALOVÁ, A.; POKORNÝ, J.; DVORSKÝ, D.; et al. (2024). Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniques. In: Journal of Materials Research and Technology, Vol. 29, 3626-3641. Go to original source...
  8. SHI, Z. Z.; GAO, X. X.; ZHANG, H. J.; LIU, X. F.; LI, H. Y.; ZHOU, C.; YIN, Y. X.; WANG, L. N. (2020). Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. In: Bioact Mater, Vol. 5, 2, 210-218. Go to original source...
  9. SHOKRY, A.; AHADI, A.; STAHLE, P.; ORLOV, D. (2021). Improvement of structural efficiency in metals by the control of topological arrangements in ultrafine and coarse grains. In: Sci Rep, Vol. 11, 1, 17445. Go to original source...
  10. AMEYAMA, K.; CAZES, F.; COUQUE, H.; DIRRAS, G.; KIKUCHI, S.; LI, J.; MOMPIOU, F.; MONDAL, K.; ORLOV, D.; SHARMA, B.; et al. (2022). Harmonic structure, a promising microstructure design. In: Materials Research Letters, Vol. 10, 7, 440-471. Go to original source...
  11. PARK, H. K.; AMEYAMA, K.; YOO, J.; HWANG, H.; KIM, H. S. (2018). Additional hardening in harmonic structured materials by strain partitioning and back stress. In: Materials Research Letters, Vol. 6, 5, 261-267. Go to original source...
  12. VAJPAI, S. K.; OTA, M.; ZHANG, Z.; AMEYAMA, K. (2016). Three-dimensionally gradient harmonic structure design: an integrated approach for high performance structural materials. In: Materials Research Letters, Vol. 4, 4, 191-197. Go to original source...
  13. ZHU, Y.; AMEYAMA, K.; ANDERSON, P. M.; BEYERLEIN, I. J.; GAO, H.; KIM, H. S.; LAVERNIA, E.; MATHAUDHU, S.; MUGHRABI, H.; RITCHIE, R. O.; et al. (2020). Heterostructured materials: superior properties from hetero-zone interaction. In: Materials Research Letters, Vol. 9, 1, 1-31. Go to original source...
  14. ZHU, Y.; WU, X. (2023). Heterostructured materials. In: Progress in Materials Science, Vol. 131, Go to original source...
  15. RHO, J. Y.; KUHN-SPEARING, L.; ZIOUPOS, P. (1998). Mechanical properties and the hierarchical structure of bone. In: Medical engineering & physics, Vol. 20, 2, 92-102. Go to original source...
  16. CHANDRA, G.; PANDEY, A. (2020). Biodegradable bone implants in orthopedic applications: a review. In: Biocybernetics and Biomedical Engineering, Vol. 40, 2, 596-610. Go to original source...
  17. WEILER, A.; HOFFMANN, R. F.; STÄHELIN, A. C.; HELLING, H. J.; SÜDKAMP, N. P. (2000). Biodegradable Implants in Sports Medicine The Biological Base. In: Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 16, 3, 305-321. Go to original source...
  18. KUBÁSEK, J.; TORKORNOO, S.; NEČAS, D.; MCCARROLL, I.; HYBÁ©EK, V.; GAULT, B.; JABLONSKÁ, E.; DONIK, Č.; PAULIN, I.; GOGOLA, P.; et al. (2025). Towards increased strength and retained ductility of Zn-Mg-(Ag) materials for medical devices by adopting powder metallurgy processing routes. In: Journal of Materials Research and Technology, Vol. 37, 4345-4361. Go to original source...
  19. MOSTAED, E.; SIKORA-JASINSKA, M.; MOSTAED, A.; LOFFREDO, S.; DEMIR, A. G.; PREVITALI, B.; MANTOVANI, D.; BEANLAND, R.; VEDANI, M. (2016). Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. In: J Mech Behav Biomed Mater, Vol. 60, 581-602. Go to original source...
  20. WANG, L.-Q.; REN, Y.-P.; SUN, S.-N.; ZHAO, H.; LI, S.; QIN, G.-W. (2017). Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn-Mg Binary Alloys. In: Acta Metallurgica Sinica (English Letters), Vol. 30, 10, 931-940. Go to original source...
  21. SOJITHAMPORN, P.; SAWANGRAT, C.; LEKSAKUL, K.; SHARMA, B.; AMEYAMA, K. (2022). Optimization of Mechanical Milling Process Parameters on Mechanical Properties and Fracture Mechanism of Harmonic-Structure Pure Cu. In: Materials Vol. 15, 23, Go to original source...
  22. VENEZUELA, J.; DARGUSCH, M. S. (2019). The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. In: Acta Biomater, Vol. 87, 1-40. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.