Manufacturing Technology 2016, 16(3):641-647 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/641

The Application of Ultrasonic Levitation in the Rotor Support

Wang Hong-chen1,2, Yang Zhi-gang1, Liu Lei1
1 College of Mechanical Science and Engineering, Jilin University, Changchun 130025, China
2 Engineering Training Cenfer, Changchun Institute of Technology, Changchun 130012, China

In order to enhance the stiffness of the gas film and increase the maximum speed of the rotor, this paper proposes an ultrasonic levitation structure with a cone type bidirectional supporting motor. The performance of the conical-type ultrasonic levitation support is analysed and tested according the relationship between the levitation force and levitation gap. Through theoretical analysis it is realised that the critical speed and vibration mode of the motor rotor is affected by the change of levitation gap in the ultrasonic levitation condition. The experiments with levitation gap and the maximum speed of the motor rotor show the structure can reduce the suspended gap, while simultaneously the maximum speed of the rotor is increased.

Keywords: Ultrasonic Vibration, Suspension Support, Squeeze Film, Suspension Clearance

Published: June 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang H, Yang Z, Liu L. The Application of Ultrasonic Levitation in the Rotor Support. Manufacturing Technology. 2016;16(3):641-647. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/641.
Download citation

References

  1. MATSUO, E., KOIKE. Y., NAKAMURA. K., UEHA, S. etc.(2000). Holding characteristics of planar objects suspended by near-field acoustic levitation. In: Ultrasonics, pp. 60 - 63. Go to original source...
  2. CHANG Ying, YANG Zhi-gang, WU Bo-da etc. (2004). Experimental study on bearing capacity and suspension performance of Ultrasonic Bearing. In: Piezoelectrics & Acoustooptics, Vol. 2, pp. 197 - 199.
  3. CHANG Ying, WUBo-da, YANGZhi-gangetc. (2004). The antifriction performance ability and the ultrasonic suspension thrust bearing. In: Journal of Jilin University, Vol.34: pp. 221 - 225.
  4. ZENG Ping, CAO Yong-chang, CHENG Guang-ming etc. (2006). The mechanism analysis of friction reduction of UltrasonicBearing. In: Lubricationandseal, Vol.182: pp. 18 - 21.
  5. CHANG Ying, WUBo-da, CHENG Guang-ming etc. (2006). Piezoelectric modal analysis and experimental study of Ultrasonic Bearing. In: Journal of Harbin Institute of Technology, Vol.68: pp. 752 - 759.
  6. WU Bo-da, CHANG Ying, YANG Zhi-gang etc. (2004). Theoretical analysis and experimental study of ultrasonic vibration anti-frictionperformance. In: China Mechanical Engineering, Vol.15: pp. 813 - 815.
  7. PENG Tai-jiang, YANG Zhi-gang, TIAN Feng-jun etc. (2008). Technology of ultrasonic levitation supporting shaft. In: Optics and precision engineering, Vol.16: pp.1895 - 1900.
  8. HUANG Ming-jun, ZHOU Tie-ying, WU Qing-hua. (2000). Effect of ultrasonic vibration on the frictional force. In: Chinese Journal of acoustics, Vol.25: pp.115 - 119.
  9. CHENG Guang-ming,Z ENG Ping,QIU Xiao-yang etc. (1998). Study on ultrasonic vibration antifriction phenomenon. In: Piezoelectrics & Acoustooptics, Vol.20, pp.322 - 325.
  10. UEHA, SADAYUKI; HASHIMOTO, YOSHIKI; KOIKE etc. (2000). Non-contact transportation using near-field acoustic levitation, In: Ultrasonics, Vol. 38, pp.26 - 32. Go to original source...
  11. KOSHIZUKA, N., ISHIKAWA, K., NASU, H. etc, (2003). Progress of superconducting bearing technologies for flywheel energy storage systems, In: Physica 386: pp.444 - 450. Go to original source...
  12. MITAL, D., ZAJAC, J., HATALA, M. etc, (2014). Identification of Internal Residual Stress of Steel after Milling by Ultrasound, In: Manufacturing Technology Journal, Vol. 14, pp.573 - 578. Go to original source...
  13. VAJDOVÁ, A., MICIETOVA, A., NESLUSAN, M. etc, (2014). Analysis of Surface Integrity of Parts after non Conventional Methods of Machining, In: Manufacturing Technology Journal, Vol. 14, pp. 470 - 474. Go to original source...
  14. ADAMSTOLARSKI, T., KHONSARI, M.M. (2011). Running Characteristics of Aerodynamic Bearing with Self-Lifting Capability at Low Rotational Speed. In: Advances in Tribology, pp.973-740. Go to original source...