Manufacturing Technology 2018, 18(2):325-329 | DOI: 10.21062/ujep/100.2018/a/1213-2489/MT/18/2/325

Numerical Analysis of Stress States with the Spheroidal, Lamellar and Vermicular Type of Graphite

Ján Vavro jr., Ján Vavro, Ivan Labaj, Marcel Kohutiar
Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín. I. Krásku 491/30, 020 01 Púchov. Slovac Republic

The paper is concerned with the analysis of tensile stress conditions and microstructure of cast iron with spheroidal, lamellar and vermicular type of graphite. To prepare a geometrical model, quantitative metallography has been used as it enables us to evaluate the structure of the material on the basis of image analysis. The computing structure model has been created in 2-D area by linear triangular elements. On the basis of real structure of the cast iron with spheroidal, lamellar and vermicular type of graphite, a model was created from numerical analysis of tension deformation conditions by finite element method in ADINA software environment. This calculation program helps to solve a very difficult task and has the advantage that the generated model can reflect the actual geometry of the object very well. For the calculation and following statistic evaluation objects, it is necessary to generate a greater number of geometrical models in the future. This theory on modelling of microstructure of materials and following numerical analysis opens new areas and outlooks for usage of computing instruments when analysing the state of the material structure in the area of tension, absorption or frequency qualities of the material. Stress concentration is increased with irregularities of graphite particles shapes.

Keywords: numerical analysis, finite element method, spheroidal type of graphite, lamellar type of graphite, vermincular type of graphite

Published: April 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vavro J, Vavro J, Labaj I, Kohutiar M. Numerical Analysis of Stress States with the Spheroidal, Lamellar and Vermicular Type of Graphite. Manufacturing Technology. 2018;18(2):325-329. doi: 10.21062/ujep/100.2018/a/1213-2489/MT/18/2/325.
Download citation

References

  1. SHEN, G., ROLLINS, J., FURRER, D., (1996), Microstructure Modeling of Forged Waspaloy Discs. Superalloys 1996, KISSINGER, R.D. et al. (Ed.). TMS, (1996), p. 613-620. Go to original source...
  2. DOBRZAŃSKI, L.A., ¦LIWA, A., TAŃSKI, T., (2009), Finite Element Method application for modelling of mechanical properties. In Computational Materials Science and Surface Engineering, (2009), vol. 1, p. 25-28.
  3. DUARTE, C.A., BABU©KA, I., ODEN, J. T., (2000), Generalized finite element methods for three-dimensional structural mechanics problems. In Computers & Structures [online], (2000), vol. 77, p. 215-232. Go to original source...
  4. CHAWLA, N., GANESH, V.V., WUNSCH, B., (2004). Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites. In Scripta Materialia (2004), vol. 51, p. 161-165. Go to original source...
  5. DEKAZINCZY, F., (1970). Effect of Small Defects on the Fatigue Properties of Medium-Strength Cast Steel, Iron Steel Inst., 208, (1970), p.851-855.
  6. MURAKAMI, Y., (2002). Metal Fatigue : Effcts of Small Defects and Nonmetalic Inclusions, First edition, Elsevier Science.
  7. NELDER, J.A., MEAD, R. A., (1965). Simplex Method for Function Minimization, Computer Journal, 7, (1965), p.308-313. Go to original source...
  8. HANDRIK, M. (2008). Algoritmizácia modelovania stavu napätosti v mikroątruktúra LGG liatin, DP, ®U v ®iline, (2008).
  9. SKOČOVSKÝ, P., PODRÁBSKÝ, T. (2005). Grafitické liatiny. vyd. ®ilina: EDIS, (2005), ISBN 80-8070-390-6.
  10. FRANTISEK KLIMENDA, JOSEF SOUKUP, MILAN ZMINDAK (2016). Deformation of Aluminium Thin Plate, Manufacturing Technology, Volume 16, (2016), ISSN 1213-2489, 124-129. Go to original source...
  11. ZUZANA STANKOVIČOVÁ, VLADIMÍR DEKÝ©, PAVOL NOVÁK, MILAN SAPIETA (2015). Numerical Simulation of Thermoelastic Stress Analysis, Manufacturing Technology, Volume 15, (2015), ISSN 1213-2489, 925-930. Go to original source...
  12. Milan ®mindák, Jozef Meąko, Zoran Pelagić, Andrej Zrak, Finite Element Analysis of Crack Growth in Pipelines, Manufacturing Technology, Volume 14, (2014), ISSN 1213-2489, 116-122. Go to original source...
  13. VAVRO, J. (2012). Numerická analýza napä»ových stavov ątruktúr grafitických liatin. Trenčianská univerzita Alexandra Dubčeka v Trenčíne, (2013) ISBN 98-80-075-614-7.
  14. ELENA STŘIHAVKOVÁ, VICTORIE WEISS (2012). The Identification of the structures new type Al-Si-MgCa alloys with diferent Ca content using of the color metallography, Manufacturing Technology, Volume 12, (2012), ISSN 1213-2489, 248-251. Go to original source...
  15. IVA NOVÁ, JIŘÍ MACHUTA (2013). Monitoring of the microstructure and mechanical properties of the magnesium alloy used for steering wheel manufacturing, Manufacturing Technology, Volume 13, (2013), ISSN 1213-2489, 385-390. Go to original source...
  16. IVA NOVÁ, JIŘÍ MACHUTA (2014). Monitoring Methods the Properties and Structure of Grey Iron Castings, Manufacturing Technology, Volume 13, (2014), ISSN 1213-2489, 223-228. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.