Manufacturing Technology 2021, 21(6):793-804 | DOI: 10.21062/mft.2021.086

Mathematical modeling and numerical simulation of the buckling stability behavior of hybrid beam

Abdelmalek Khebli ORCID...1, Salah Aguib ORCID...2, Chikh Noureddine ORCID...2, Kobzili Lallia ORCID...2,3, Meloussi Mounir ORCID...2,4
1 Laboratoire Electrification des Entreprises Industrielles, Université de Boumerdès Algérie
2 Dynamic Motors and Vibroacoustic Laboratory, Faculty of Technology, University of Boumerdes35000, Algeria
3 Mechanical Engineering and Development Laboratory, National Polytechnic School, Alger, Algeria
4 CNRS UMR 7010, Institute of Physics of Nice, University Côte d’Azur, Parc Valrose 06108 Nice, France

In this article, we studied the phenomenon of instability which is the buckling of the beam elaborated of steel (E36-S355), and magnetorheological elastomer subject to compression-flexion solicitation. The study of the influence of the intensity of the magnetic field on the buckling instability of compressed hybrid beams is done by a mathematical development using the Ritz approach and by a numerical simulation under the Abaqus calculation code. The obtained results show clearly that we can control the instabilities of the adaptive intelligent beams behavior by the magnetic field.

Keywords: Composite hybrid beam, Ritz approach modeling, Numerical simulation, buckling stability
Grants and funding:

Thanks to the Laboratory of Condensed Matter Physics (LPMC) University of Nice – Sophia Antipolis – France, for providing various supports for this study. We are also grateful to Messrs George Bossis Research Director Emeritus and Dr. Kuzhir Pavel of LPMC, for their help.

Received: June 10, 2021; Revised: November 25, 2021; Accepted: December 1, 2021; Prepublished online: December 21, 2021; Published: January 8, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Khebli A, Aguib S, Noureddine C, Lallia K, Mounir M. Mathematical modeling and numerical simulation of the buckling stability behavior of hybrid beam. Manufacturing Technology. 2021;21(6):793-804. doi: 10.21062/mft.2021.086.
Download citation

References

  1. SOOMIN, A., YOON, Y.K. (2021). Higher-order beam bending theory for static, free vibration, and buckling analysis of thin-walled rectangular hollow section beams. In: Computers Structures, Vol. 248, No., 106494. Go to original source...
  2. QIDUO, J., XUAN, H., YIRU, R., HONGYONG, J. (2020). On static and dynamic snap-throughs of the imperfect post-buckled FG-GRC sandwich beams. In: Journal of Sound and Vibration, Vol. 489, No., 115684. Go to original source...
  3. MASOUD, D., NIKNAM, M., THOMAS, A.B. (2021). Analytical and experimental study of a clamped-clamped, bistable buckled beam low-frequency PVDF vibration energy harvester. In: Journal of Sound and Vibration, Vol. 497, No., 115937. Go to original source...
  4. HANING, X., BENJAMIN, D.R. (2021). Modal analysis of post-buckled beams undergoing stable transitions between remote equilibria. In: Journal of Sound and Vibration, Vol. 501, No., 116039. Go to original source...
  5. NGOC, H.P., CAO, H.P., KIM, J.R.R. (2021). Global buckling capacity of cold-rolled aluminium alloy channel section beams. In: Journal of Constructional Steel Research, Vol. 179, No., 106521. Go to original source...
  6. XIAO-LEI, Y., GUO-QIANG, L., YAN-BOW, JIN, J. (2020). Experimental and numerical investigation on flexural-torsional buckling of Q460 steel beams. In: Journal of Constructional Steel Research, Vol. 174, No., 106276. Go to original source...
  7. CHENYU, L., JING, W., LUQI, X. (2021). Seismic performance of buckling-restrained reduced beam section connection for steel frames. In: Journal of Constructional Steel Research, Vol. 181, No., 106622. Go to original source...
  8. YUANBIN, W., WEIDONG, Z. (2021). Nonlinear transverse vibration of a hyperelastic beam under harmonic axial loading in the subcritical buckling regime. In: Applied Mathematical Modelling, Vol. 94, No., pp. 597-618. Go to original source...
  9. SAMIR, E., WALTER, L. (2021). Buckling and postbuckling of extensible, shear-deformable beams: Some exact solutions and new insights. In: International Journal of Non-Linear Mechanics, Vol. 129, No., 103667. Go to original source...
  10. JEN-SAN, C., LIEN-CHENG, W. (2020). Contact between two planar buckled beams pushed together transversely. In: International Journal of Solids and Structures, Vol. 199, No., pp.181-189. Go to original source...
  11. Jiøí M., Ivo D. (2018). Properties of Electron Beam Hardened Layers made by Different Beam Deflection. In: Manufacturing Technology, Vol. 18, No. 2, pp. 279-284. Go to original source...
  12. ZONGXING, Z., SHANHUA, X., HAO, W., BIAO, N., CHAO, S. (2021). Flexural buckling behavior of corroded hot-rolled H-section steel beams. In: Engineering Structures, Vol. 229, No., 111614. Go to original source...
  13. ABO-BAKR, R.M., ABO-BAKR, H.M., MOHAMED, S.A., ELTAHER, M.A. (2021). Optimal weight for buckling of FG beam under variable axial load using Pareto optimality. In: Composite Structures, Vol. 258, No., 113193. Go to original source...
  14. CONG, I.L., NGOC, A.T.L., DINH, K.N. (2021). Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element. In: Composite Structures, Vol.261, No., 113309. Go to original source...
  15. JUN, L., BING, H., WENBIN, Y., FAN, Y. (2021). High performance model for buckling of functionally graded sandwich beams using a new semi-analytical method. In: Composite Structures, Vol. 262, No., 113614. Go to original source...
  16. FARID, A., FADIA, A., CHAHMI, O. (2020). Buckling improvement of pretwisted universal steel beams. In: Thin-Walled Structures, Vol. 157, No., 107117. Go to original source...
  17. HADI, A., SEYYED, M.H.H., YASER, K.. (2021). Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise. In: Thin-Walled Structures, Vol. 158, No., 107187. Go to original source...
  18. MOHAMMAD, A., FARSHID, N. (2021). Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method. In: Thin-Walled Structures, Vol. 158, No., 107200. Go to original source...
  19. YOSHIHIRO, K., SZYMON, M.F., ATSUSHI, S. (2021). Elastic local buckling strength of I-beam cantilevers subjected to bending moment and shear force based on flange-web interaction. In: Thin-Walled Structures, Vol. 162, NO., 107633. Go to original source...
  20. LINH, T.M.P., TAN-TIEN, N., JAEHONG, L. (2021). Buckling analysis of open-section beams with thin-walled functionally graded materials along the contour direction. In: European Journal of Mechanics /A. Solids, Vol. 88, No., 104217. Go to original source...
  21. Dita, J. (2020). Comparison of Experimental Investigation of Deflection of the Sandwich Composite Beam by Optic-fibre Gauge with Theoretical Models. In: Manufacturing Technology, Vol. 20, No. 2, pp. 183-189. Go to original source...
  22. HANING, X., BENJAMIN, D.R. (2021). Stabilizing higher-order equilibria of post-buckled beams using piezoelectric actuation. In: European Journal of Mechanics / A Solids, Vol. 88, No., 104264. Go to original source...
  23. WENZHONG, Y., YUNCHEN, Y., ANKUR, M. (2019). Analytical modeling for rapid design of bistable buckled beams. In: Theoretical & Applied Mechanics Letters, Vol. 9, No., pp. 264-272. Go to original source...
  24. FARZAD, E., PENDAR, H., ALI, D. (2021). Buckling analysis of embedded graphene oxide powder-reinforced nanocomposite shells. In: Defence Technology, Vol. 17, No., pp. 226-233. Go to original source...
  25. AGÜEROA, A., BALAZ, I., KOLEKOV, Y. (2021). New method for metal beams sensitive to lateral torsional buckling with an equivalent geometrical UGLI imperfection. In: Structures, Vol. 29, No., pp. 1445-1462. Go to original source...
  26. NEDJAR., A., AGUIB, S., DJEDID, T., NOUR, A., SETTET, A. T., TOURAB, M. (2019). Analysis of the Dynamic Behavior of Magnetorheological Elastomer Composite: Elaboration and Identification of Rheological Properties. In: Silicon, Vol. 11, pp.1287-1293. Go to original source...
  27. TOURAB., M, AGUIB., S. (2019). Experimental Analysis of The Thermal Effect of The Magneto- Mechanical Behavior of Viscoelastic Elastomer. J Adv Res Fluid Mech Thermal Sci., Vol. 53, pp.25-34.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.